摘要 - 离散傅里叶变形(DFT)的数字实施是对记录的生物电势评估的特征评估,尤其是在量化神经系统疾病状态的生物标志物中用于自适应深脑刺激。快速傅立叶变换(FFT)算法和体系结构在可植入的医疗设备中的机载电池中呈现了巨大的功率需求,因此需要在资源约束环境中开发超低功率傅立叶变换方法。许多FFT架构旨在通过计算效率优化功率和资源需求;但是,优先考虑以其他计算为代价减少逻辑复合物可能是平等或更有效的。本文引入了最小的体系结构单延迟反馈离散傅立叶变换(MSDF-DFT),用于超低功率字段可编程的门阵列应用程序,并显示了对先进的FFT方法的能量和功率改进。与最先进的FFT算法相比,我们观察到动态功率降低了33%,在神经传感应用中降低了4%的资源利用率。虽然设计用于闭环深脑刺激和医疗设备实现,但MSDF-DFT也很容易扩展到任何超低功率嵌入式应用程序。
Fredkin 门以物理学家 Edward Fredkin 的名字命名,他引入了可逆计算的概念,并为可逆逻辑门的发展做出了贡献。可逆门在量子计算中非常重要,因为它们可以保存信息,因此可用于构建信息不能丢失的量子电路。Fredkin 门,也称为受控交换 (CSWAP) 门,是量子计算和可逆计算中的三位可逆门。它对三位执行受控交换操作。如果第一位(控制位)设置为 1,Fredkin 门会交换第二位和第三位,如果控制位为 0,则保持不变。可逆逻辑也称为信息无损逻辑,因为嵌入在电路中的信息如果丢失可以恢复。人们设计和发明了许多可逆门。例如 Fredkin 门、Toffoli 门、Peres 门和 Feynman 门。可逆逻辑具有广泛的应用,被认为是未来技术之一。但逻辑电路设计基于不可逆的逻辑门。这些逻辑门有助于未来实现更高端的电路。本文尝试使用可逆门设计逻辑门,并设计了一些高端电路,例如二进制到灰度、灰度到二进制、加法器、减法器等。
原因:领导层邀请您参加纪念仪式,纪念荣誉勋章获得者、退役中校 Ernest Childers。Childers 是一名克里克族美洲原住民,1937 年入伍国民警卫队,1941 年加入雷鸟师,1943 年在西西里战役中被任命为少尉。在入侵意大利奥利维托时,他的营被困住,Childers 亲自组建了一支队伍,占领了阵地,杀死并俘虏了受伤的敌军士兵。1944 年 4 月,Childers 成为第一位因其行为在二战中获得荣誉勋章的美洲印第安人。奇尔德斯是杰出的领导才能、主动性、临战冷静和英勇事迹的典范。奇尔德斯在战争中幸存下来,并继续留在美国陆军,直到 1965 年退役,晋升为中校。他于 2005 年去世。
近年来,随着半导体技术进入10nm以下技术节点,短沟道效应(SCE)和功耗耗散问题成为场效应晶体管进一步小型化面临的巨大挑战,需要采取强制性措施予以解决。从3nm技术节点开始,环绕栅极结构提高的SCE抑制能力使环绕栅极场效应晶体管登上了历史舞台。本文展示了双栅极纳米管环绕栅极场效应晶体管(DG NT GAAFET)的超强静电控制能力,并与具有相同器件参数设计的纳米管(NT GAAFET)和纳米线环绕栅极场效应晶体管(NW GAAFET)进行了比较。与NT GAAFET和NW GAAFET相比,DG NT GAAFET的I on 分别提升了62%和57%。此外,由于静电控制的增强,DG NT GAAFET 中的 SCE 得到了明显抑制,这可以通过改善 I off 、SS 和 I on /I off 比来证明。另一方面,NT GAAFET 的 I on 与 NW GAA-FET 相当,而与 NW GAA-FET 相比,它的 I off 小 1 个数量级,SS 小近 2 倍,体现了纳米管通道结构的优越性。最后,通过 TCAD 模拟研究验证了纳米管通道结构,特别是双栅极纳米管结构对 L g 缩放的稳健性。关键词:双栅极,纳米管,纳米线,短沟道效应,功耗耗散。
在文件验证时,以印度政府职位任命格式支持他们属于 OBC 中央名单中的 OBC 社区。候选人在任命前还应提交一份声明,说明他/她不属于 OBC 的奶油层。用于教育目的的 OBC 非奶油层证书将不予考虑。包含非奶油层条款的 OBC 种姓证书应在申请提交截止日期有效。证书中提到的种姓名称应符合中央政府名单/通知。
带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射
微电子与超大规模集成电路 * 集成电路与电路 * 电力电子与驱动信号处理与通信 * 控制与自动化电子系统 * 电力系统固态器件 * 计算机技术 * 仪器仪表技术 * 人工智能与机器学习 * * 非电子工程核心
亲爱的编辑,随着 VLSI 技术的发展,环栅 (GAA) 硅纳米线晶体管 (SNWT) 已成为技术路线图末端最终缩放 CMOS 器件最有潜力的候选者之一。一些先驱研究已经证明了 GAA SNWT 的超可扩展性和高性能 [1-3]。然而,在实际制作结果中 [1,2],由于纳米线对蚀刻工艺的阴影效应,环栅栅极电极通常不是关于纳米线中心轴理想对称的,而是沿纳米线轴向呈梯形横截面。栅极电极的这种不对称性会使性能评估不正确,并导致用于电路仿真的器件紧凑模型不准确。然而,对非对称 GAA 硅纳米线 MOSFET 建模的研究仍然不足 [4,5]。本研究建立了非对称栅极GAA SNWT的有效栅极长度模型,并用技术计算机辅助设计(TCAD)仿真对其进行了验证。利用所提出的模型,可以将非对称GAA SNWT视为等效对称器件,从而可以在电路仿真中简化建模参数。仿真与方法。图1(a)沿沟道方向描绘了非对称栅极GAA SNWT的横截面。在
抽象不可逆的逻辑与统一的量子进化不一致。通过经典测量模拟此类操作可能会导致干扰和高度资源需求。为了克服这些局限性,我们提出了协议,即利用耗散实现不可逆转的门操作所需的无政府进化。使用其他激发态,可能会衰减,我们设计了在最小稳定的希尔伯特空间上执行所需的门操作的有效衰减过程。这些以确定性和自主的方式运行,而无需进行测量。我们考虑了几种经典逻辑操作,例如OR,NOR和XOR Gates。朝着实验实现,我们讨论了量子点中可能的实现。我们的研究表明,不可逆转的逻辑操作可以在逼真的量子系统上有效地执行,并且耗散工程是获得非洲发展的必要工具。拟议的操作扩展了量子工程师的工具箱,并在NISQ算法和Quantum机器学习中具有有希望的应用。
摘要 —机场协同决策 (A-CDM) 概念为机场提供了切实可行的解决方案,可提高交通准时性和可预测性,并可能减少延误、噪音和污染。A-CDM 的一个主要特点是离港管理 (DMAN):可以预测跑道起飞顺序,从而可以在登机口关闭发动机的情况下将很大一部分延误转移,而不会影响剩余的交通。在此过程中,延误起飞的登机口占用率不可避免地会增加,因此机场布局必须提供足够的登机口,并且登机口的分配必须足够稳健,以应对起飞延误。在本文中,我们介绍了一种估算由于 DMAN 起飞前调度而导致的登机口延误的方法,然后我们提出了一种稳健的登机口分配算法,并评估了该算法在巴黎戴高乐国际机场当前和增加的交通量下的性能。结果表明,与当前做法相比,这种稳健的登机口分配方式显著减少了登机口冲突的数量。索引术语 — 出发管理、登机口分配、稳健性