现代汽车信息娱乐系统通过在主要驾驶任务中添加次要任务来促进驾驶。这些次要任务很有可能分散驾驶员对主要驾驶任务的注意力,从而降低安全性或增加认知工作量。同样,军用飞机(包括快速喷气式飞机和运输机)的飞行员除了主要飞行任务外,还需要执行大量的次要任务控制任务,在某些情况下,例如在地面攻击例行程序中,任务控制次要任务变得比自动驾驶飞行任务更为重要。因此,在汽车和航空环境中,简化操作员与电子用户界面之间的人机交互 (HMI) 可以潜在地提高安全性并有助于充分利用这些系统的真正潜力。本文提出了一种新的交互系统,该系统将现有的头向下式显示器投射到操作员(汽车环境中的驾驶员和航空环境中的飞行员)挡风玻璃前的半透明板上。投影屏幕允许以指向和选择的形式进行交互,就像传统的图形用户界面一样,但是会跟踪操作员的视线或手指运动。最终的系统旨在减少操作员需要将视线从驾驶或飞行的主要任务上移开的次数,并且他们只需通过查看或移动食指即可与投影显示进行交互。我们有
在虚拟现实(VR)系统中,使用红外摄像头跟踪眼动运动的系统,凝视测量的精度对于可靠检测眼运动障碍至关重要。评估基于HMD VR的医疗设备系统NEOS TM的凝视测量能力和凝视精度的一致性,在最佳条件下,我们使用了一种机器人设置,该设置提供了模仿人眼运动的优势,其运动可变性最小。,我们通过计算Intarclass Intarace相关系数(ICC),测量值(SEM)和Bland-Altman分析来评估NEOS™的凝视测试两次,以不同的噪声水平为13个模拟条件,然后评估了每个噪声水平。我们发现NEOS™的凝视精度具有出色的测试可靠性(ICC> 0.99,SEM = 0.04),并通过Bland-Altman分析观察到了第一和第二凝精度测量之间的良好协议。凝视所有九个基本方向的NeoS™的高ICC和低SEM均显示了其眼睛跟踪的可靠性和测量一致性。在临床设置中使用时,这是针对基于HMD的VR设备的眼睛跟踪应用的关键功能。使用机器人眼客观地验证基于VR的眼球跟踪器可以适用于其他设备。未来的研究将研究不同人口中测量值的纵向稳定性。
传感器和通信技术的进步使航空飞行更加容易和安全,但代价是飞机会产生大量信息。尽管大量信息用于地面离线处理或机载任务计算机自动处理,如控制自动驾驶系统,但飞行员需要手动感知和处理大量信息,以便为飞行和任务控制任务做出决策(Hierl、Neujahr 和 Sandl,2012 年)。军用快速喷气式飞机(用于空中优势或多用途任务的战斗机)的信息处理比客机更困难,因为飞行员除了主要飞行任务外还需要执行次要任务。次要任务控制任务可能包括侦察、保护或跟踪空中资产以及武器投送,所有这些都需要仔细感知和分析飞机外部的信息以及驾驶舱内显示的信息。在有限的驾驶舱空间内有效显示信息是一项具有挑战性的设计任务。现有军用飞机使用三种类型的视觉显示器:下视显示器 (HDD)、抬头显示器 (HUD) 和头戴式显示器 (HMD)。HDD 配置为将信息显示为多功能显示器 (MFD)。MFD 用于以可配置的方式显示从主要飞行数据到空中物体细节等信息。每个都是矩形的,由一组
摘要 - 机器人很容易犯错,这可能会对他们在与人类用户的协作任务中的队友的信誉产生负面影响。从这些失败中检测和恢复对于维持用户的有效信任水平至关重要。但是,机器人可能会失败而不意识到它。检测这种失败的一种方法可能是分析人类的非语言行为和对失败的反应。这项研究调查了人类凝视动力学如何表明机器人的失败,并检查了不同类型的故障如何影响人们对机器人的看法。我们与27名参与者进行了一项用户研究,与机器人移动操纵器合作解决了Tangram难题。机器人被编程为经历两种类型的故障 - 执行和决策 - 在任务的开头或结束时发生,无论是否确认失败。我们的发现表明,机器人故障的类型和时机显着影响参与者的凝视行为和对机器人的感知。具体来说,执行故障导致了更多的目光转移并增加了对机器人的关注,而决策失败导致感兴趣领域的凝视过渡的熵较低,尤其是在任务结束时发生故障时。这些结果表明,凝视可以作为机器人故障及其类型的可靠指标,也可以用于预测适当的恢复动作。索引术语 - 动物失败,凝视动态,人机协作
对身体残障人士对辅助技术的需求不断增长,导致人类计算机相互作用(HCI)的显着进步。眼目光跟踪是一种有希望的输入方式,它提供了一种非侵入性和直观的方式来增强可访问性和交互作用。本文介绍了IALERT,这是一种创新的基于眼神的警报系统,旨在为具有有限的机动性或沟通能力的个人提供及时的帮助。通过分析眼动,IALERT旨在检测用户意图并触发适当的响应,从而促进改善与环境的互动,增强安全性并在日常任务中提供实时帮助。该系统具有改善身体障碍,老年人以及需要辅助技术的人的生活质量的巨大潜力。
2024 6th International Workshop on Gaze Estimation and Prediction in the Wild (GAZE 2024) at CVPR 2023 OCELOT 2023: Cell Detection from Cell-Tissue Interaction Challenge at MICCAI 5th International Workshop on Gaze Estimation and Prediction in the Wild (GAZE 2023) at CVPR 2021 3rd International Workshop on Gaze Estimation and Prediction in the Wild (GAZE 2021) at CVPR 2020年AR,VR和野外(OpenEyes 2020)的国际眼睛凝视国际研讨会在ECCV 2019上的第一届国际凝视估算和预测(Gaze 2019)的ICCV
评估混合倡议团队中人类互动人的认知工作量是自主互动系统的关键能力,可以使适应能够改善团队绩效。然而,由于证据的分歧,仍然尚不清楚,这种传感方式可能最适合确定人类工作量。在本文中,我们报告了一项实证研究的结果,该研究旨在通过收集眼睛注视和脑脑脑(EEG)数据来回答这个问题,该数据来自人类受试者,执行交互式多模式驾驶任务。通过介绍驾驶过程中的对话,制动事件和触觉刺激(例如对话,刹车事件和触觉刺激)来产生不同级别的认知工作量。我们的结果表明,瞳孔直径比脑电图更可靠的工作量预测指标。,更重要的是,结合了提取的脑电图和学生直径功能的五种不同的机器学习模型都能仅仅显示了工作负载分类的任何改进,而不是眼神凝视,这表明眼睛凝视是一种足够的方式,可以评估人类的认知工作负载,以评估人类的互动,多模式,多任务,多任命,多任务设置。
摘要 — 自动眼动追踪对于与患有肌萎缩侧索硬化症的人互动、用眼睛控制电脑鼠标以及对葡萄膜黑色素瘤进行控制性放射治疗都具有重要意义。据推测,凝视估计的准确性可能通过使用前庭眼动反射来提高。这种不自主的反射会导致缓慢的补偿性眼动,与头部运动的方向相反。因此,我们假设在眼动追踪过程中让头部自由移动一定比保持头部固定、只让眼睛移动产生更准确的结果。本研究的目的是创建一个低成本的眼动追踪系统,通过保持头部自由移动,将前庭眼动反射纳入凝视估计中。所用的仪器包括一个低成本的头戴式网络摄像头,可记录一只眼睛。尽管用于记录的网络摄像头是低端的,并且没有直接照明,但瞳孔检测是完全自动和实时的,采用了简单的基于颜色和基于模型的混合算法。本研究测试了基于模型的算法和基于插值的算法。根据凝视估计结果中的平均绝对角度差,我们得出结论,基于模型的算法在头部不动时表现更好,而在头部移动时同样表现良好。当头部自由移动时,使用任一算法,凝视点与目标点的大多数偏差小于 1 ◦,可以得出结论,我们的设置完全符合文献中的 2 ◦ 基准,而头部不动时的偏差超过 2 ◦。所使用的算法之前未在被动照明下进行测试。这是首次研究考虑到前庭眼反射的低成本眼动追踪装置。
3D武器凝视是一个公共数据集,旨在从精确控制的,舒适的姿势到达宽的可触及空间中的物体时提供自然的手臂运动以及视觉和凝视信息。参与者参与了在虚拟环境中挑选和将物体放置在各种位置和方向上,从而使工作空间最大化了探索工作区,同时通过指导参与者通过躯干和肩部来确保参与者通过视觉反馈来确保一致的坐姿姿势。这些实验设置允许以高成功率(> 98%的物体)和最小的补偿性运动捕获自然手臂运动。数据集重组超过250万个样本,这些样本从20位健康参与者中记录,他们执行14,000个单次选拔运动(每位参与者700个)。最初旨在探索基于自然眼睛和手臂协调的新型假体控制策略,但该数据集也将对对核心感觉运动控制,人形机器人机器人,人类机器人相互作用以及在注视指导计算机视觉中相关解决方案的开发和测试的研究人员也很有用。
让飞行员在模拟器中与附近的教练一起进行模拟飞行任务。在评估这些飞行员的表现时,飞行教练依靠观察和事后评估。扫描模式是飞行教练背景的重要方面,是基本飞行的基础。例如,学生可能会扫描得太快、遗漏或注视 - 这些是扫描地平线和交叉检查仪器时常见的错误(美国空军 [USAF],2019 年)。据传,飞行教练经常提到头部和眼球运动对于判断学生意图和态势感知至关重要。带有嵌入式眼动追踪的基于虚拟现实的训练环境可以自动化并为教练观察的某些方面提供更多背景信息,并可能加快学习过程。在这项研究中,我们评估了如何使用眼动追踪(结合机器学习)客观地评估飞行员在训练期间的扫描模式,这可能会减少教练的整体工作量。因此,两个关键的研究问题是:
