摘要 - 点云注册是估计两个点云之间刚性转换矩阵的基本任务,并被视为下游视觉任务的先决条件。最近的工作试图使用可获得的RGB-D序列解决注册问题,而不是仅依靠点云,这可能并不总是可用。然而,由于多模式特征的简单串联和向量维度的增加,大多数现有的无监督RGB-D点云注册工作都难以获得细粒度,健壮,判别对应关系。这些方法通常遵循一个常见的范式:从输入数据中提取特征,估计对应关系并通过几何拟合获得转换矩阵。在这项工作中,我们设计了一个生成特征提取模块,以充分利用多模式信息,并寻求对通讯估计的新颖观点,该估算将源和目标点云中的点扩展到基于超矩形的嵌入中,并根据N-Dimensions space in-Dimensientions in-Dimensions in-Dimentions contractions in-Dimentimentions conteconsienss in-Dimentions contractions。每个基于高矩形的嵌入都是基于提出的生成特征提取模块的天然和歧视性语义的构建的,该模块涉及扩散分支,几何分支和点像素融合。我们利用生成模型的能力充分利用RGB-框架中的两种互补方式的信息。我们的代码将在以下网址发布:https://github.com/cbyan1003/dce。此外,这种独特的几何空间允许有效地计算交点量和模型概率概率,以估计对应关系。在3DMatch和扫描仪数据集上进行的广泛实验显示了该方法在这项具有挑战性的任务中的有效性,表现优于最先进的方法。
自动投标在促进在线广告方面起着至关重要的作用,该广告可以自动为广告商提供投标。强化学习(RL)在自动招标方面已广受欢迎。但是,大多数当前RL自动铸造方法是通过马尔可夫决策过程(MDP)建模的,该过程假设马尔可夫状态过渡。此假设限制了在远程场景中执行的能力,并在处理高度随机的在线广告环境时使模型不稳定。为了解决这个问题,本文介绍了AI生成的招标(AIGB),这是一种通过生成建模的新型自动投标范式。在此范式中,我们提出了diffbid,这是一种用于投标的条件扩散建模方法。diffbid直接建模返回与整个轨迹之间的相关性,从而有效地避免了长时间的时间步长的错误传播。加法,diffbid提供了一种多功能方法,用于生成轨迹,在遵守特定约束的同时最大化给定的目标。在现实世界数据集和阿里巴巴广告平台上进行的在线A/B测试进行的广泛实验证明了Diffbid的有效性,GMV增加了2.81%,ROI增加了3.36%。
CST:研究资金:杨森、艾伯维、百济神州;酬金:杨森、艾伯维、百济神州、礼来、阿斯利康。MAA:资助:NHMRC;酬金:罗氏、诺华、武田、CSL、赛诺菲、Kite Gilead、艾伯维、杨森、百济神州;差旅支持:艾伯维;顾问委员会:Sobi、艾伯维;领导:ALLG CLL 工作组联合主席。ML:差旅、住宿或费用:新基。EV:研究资金:杨森 Cilag Pty Ltd. SSO:顾问:艾伯维、安腾基因、阿斯利康、百济神州、BMS、CSL Behring、吉利德、默克、诺华、杨森、罗氏、武田;研究资金:AbbVie、AstraZeneca、BeiGene、BMS、Gilead、Janssen、Merck、Novartis、Pharmacyclics、Roche、Takeda;酬金:AbbVie、AstraZeneca、BeiGene、BMS、Gilead、Janssen、Merck、Novartis、Roche、Takeda;实体董事会或咨询委员会成员资格:AbbVie、AstraZeneca、BeiGene、BMS、Gilead、Janssen、Merck、Novartis、Roche、Takeda(提交的作品之外)。SM:顾问、实体董事会或咨询委员会成员、研究资金和/或演讲者局:AstraZeneca、BeiGene、Lilly、Janssen Pharmaceuticals、Juno/BMS、AbbVie、Genentech。RW:酬金和/或研究资金:Janssen、AbbVie、BeiGene、BioOra;上市公司现任股东:Fisher & Paykel Healthcare。RC:咨询费:强生、艾伯维、礼来、百济神州、阿斯利康、罗氏、吉利德、因塞特;酬金:强生、艾伯维、礼来、百济神州、阿斯利康、罗氏、吉利德、因塞特;差旅支持:强生、艾伯维、礼来、百济神州、阿斯利康、罗氏、吉利德、因塞特;顾问委员会:强生、艾伯维、礼来、百济神州、阿斯利康、罗氏、吉利德、因塞特。JDS:顾问:阿斯利康、BMS、基因泰克/罗氏、礼来;研究资金:Adaptive Biotechnologies、百济神州、BostonGene、基因泰克/罗氏、葛兰素史克、Moderna、武田、TG Therapeutics。 PG:酬金:AbbVie、阿斯利康、百济神州、BMS、杨森、Galapagos、礼来/Loxo、默沙东、罗氏;研究资金:AbbVie、阿斯利康、BMS、杨森。SL:顾问或顾问角色:百济神州。JH、YF、DS:就业并可能拥有股份:百济神州。HG:就业、可能拥有股份、旅行、住宿或费用和领导角色:百济神州。CYC:顾问、酬金、实体董事会或咨询委员会成员:罗氏、杨森、默沙东、吉利德、亚盛医药、阿斯利康、礼来。致谢
•利比里亚气象服务(LMS)目前拥有一个由30个站点组成的观察网络,其中包括六(6)个概要站,六(6)个农测站和18(18)个降雨站(图1 - 不包括降雨站)。所有电台都是AWO。•这些站点是由预警系统(EWS)项目-11,在詹姆斯·斯普利格斯·佩恩·赛场(James Spriggs Payne Airfield)的开发计划署-1和利比里亚国家改编行动计划(NAPA)-18•LMS运营中没有上空空气和海洋站。•目前只有一个现有车站正在运营 - 罗伯茨国际机场,由第三方,利比里亚机场管理局(LAA)运营。•在苏夫(Soff)团队在国内访问时,该国没有符合GBON的车站,也没有通过WIS 2.0传输。•大多数电台都是太阳能驱动的,但缺乏Internet连接性,无法传输数据。•缺乏电脑硬件网络来用作中央整理点也是一个主要挑战。
• 具有实时可变驱动强度的双输出驱动器 – ±15A 和 ±5A 驱动电流输出 – 数字输入引脚 (GD*),用于在没有 SPI 的情况下调整驱动强度 – 3 个电阻设置 R1、R2 或 R1||R2 – 集成 4A 有源米勒钳位或可选外部驱动器用于米勒钳位晶体管 • 初级侧和次级侧有源短路 (ASC) 支持 • 内部和外部电源的欠压和过压保护 • 驱动器芯片温度感应和过温保护 • 短路保护: – 对 DESAT 事件的响应时间为 110ns – DESAT 保护 – 最高 14V 的选择 – 基于分流电阻的短路 (SC) 和过流 (OC) 保护 – 可配置的保护阈值和消隐时间 – 可编程软关断 (STO) 和两级软关断 (2STO) 电流 • 集成 10 位 ADC – 能够测量电源开关温度、DC Link 电压、驱动器芯片温度、DESAT 引脚电压、VCC2 电压 –可编程数字比较器 • 高级 VCE/VDS 钳位电路 • 符合功能安全标准 – 专为功能安全应用而开发 – 提供文档以帮助符合 ASIL D 标准的 ISO 26262 系统设计 • 集成诊断: – 保护比较器的内置自检 (BIST) – 用于功率器件健康监测的栅极阈值电压测量 – INP 至晶体管栅极路径完整性 – 内部时钟监控 – 故障报警和警告输出 (nFLT*) – ISO 通信数据完整性检查 • 基于 SPI 的器件重新配置、验证、监控和诊断 • 150V/ns CMTI • 符合 AEC-Q100 标准,结果如下: – 器件温度等级 1:-40°C 至 +125°C 环境工作温度
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。
虽然纽约市工业发展局(“机构”)是根据纽约州法律授权的,尤其是纽约州工业发展局法案,构成了《通用市法》第18-A条第1条的第1条,《纽约法律合并法》第24章,纽约法律的第1082章,并宣布了1974年的努力,并宣布了1974年的宣布,是纽约州的宣布,是纽约州的宣布,是纽约州的宣布,是纽约州的宣布,是纽约州的宣布。在收购,建造,重建,改进,维护,维护,设备和提供工业,制造,仓储,商业和研究设施,从而促进纽约州人民的工作机会,一般繁荣和经济福利,以改善其繁荣和生活的生活;和
项目可以与一系列单独的主要国家和市场进行双边或多边合作,例如通过 Eureka 进行,资金由 Innovate UK 提供。Innovate UK 还提供支持,帮助企业和其他组织参与 Horizon Europe 项目
欢迎使用SEEA生态系统会计作为方法的方法基础,用于在Kunming-Montréal全球生物多样性框架的监视框架的多个标题指标,呼吁国家统计局与其生物多样性焦点互动,以鼓励委员会在调查范围内进行调查范围和报告统计学的统计学统计学统计学委员会。