g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
自锂离子电池的进步以来,已经大大提高了电池性能,降低成本和能量密度。这些进步加速了电动汽车(EV)的开发。电动汽车的安全性和有效性取决于对锂离子电池健康状况(SOH)的准确测量和预测;但是,这个过程尚不确定。在这项研究中,我们的主要目标是通过减少充电状态(SOC)估计和测量的不确定性来提高SOH估计的准确性。为了实现这一目标,我们提出了一种新型方法,该方法利用基于级的优化器(GBO)评估锂电池的SOH。GBO最小化的成本是为了选择最佳的候选者,以通过mem-ory fading遗忘因素更新SOH。我们评估了我们的方法针对四种鲁棒算法,即颗粒群优化最高方形支持矢量回归(PSO-LSSV),BCRLS-MULTIPEPIPPY加权双重加长扩展Kalman滤波(BCRLS-MWDEKF),总平方(TLS),以及近似加权的总载体(AWTLS)(awtles and ever and Square)(HEF)(ev)ev)(EV)。我们的方法始终优于替代方案,而GBO达到了最低的最大误差。在EV方案中,GBO的最大错误范围从0.65%到1.57%,平均误差范围从0.21%到0.57%。同样,在HEV场景中,GBO的最大错误范围从0.81%到3.21%,平均误差范围从0.39%到1.03%。此外,我们的方法还展示了出色的预测性能,均方根误差(MSE)的值较低(<1.8130e-04),根平方误差(RMSE)(RMSE)(<1.35%)和平均绝对百分比误差(MAPE)(MAPE)(MAPE)(<1.4)(<1.4)。
1. Bw 消防队 2. 空军目标保护团“弗里斯兰” 3. LogZBw 4. 预备役协会 5. GBO 6. 模型制作者 7. 信息/警卫 8. 艺术家住宿 9. 舞台 10. 啤酒花园 11. 儿童娱乐 12. 警察 13. 船港 14. 潜水员 15. EAZ 16. MUKdo 17. 补给中队 18.4.FG 19. 社交帐篷 MStpkdo 20. SanUstgZ/SanEinsStff
简介:美国国家射电天文台 (NRAO)、格林班克天文台 (GBO) 和雷神情报与空间公司 (RIS) 正在为格林班克望远镜 (GBT) 设计一种高功率的下一代行星雷达系统,称为 ngRADAR。作为一个试点项目,RIS 设计的低功率 Ku 波段发射器(13.9 GHz 时输出功率高达 700 W)被集成到 GBO 的 100 米 GBT 上,并使用 NRAO 的十个 25 米甚长基线阵列 (VLBA) 天线接收雷达回波。这些观测生成了有史以来收集到的月球选定位置的最高分辨率地面合成孔径雷达 (SAR) 图像,能够对已报废卫星(太空碎片)的大小和自旋状态进行表征,并探测到距离地球 210 万公里(约 5.5 个月球距离)的潜在危险近地小行星 [1, 2]。在这里,我们重点关注月球雷达图像。
The next generation planetary radar system on the Green Bank Telescope Patrick A. Taylor National Radio Astronomy Observatory, Green Bank Observatory Steven R. Wilkinson Raytheon Intelligence & Space Flora Paganelli National Radio Astronomy Observatory Ray Samaniego, Bishara Shamee, Aaron Wallace Raytheon Intelligence & Space Anthony J. Beasley Associated Universities Inc., National Radio Astronomy Observatory ABSTRACT The National Radio天文学天文台(NRAO),绿色银行天文台(GBO)和雷神智能与空间(RIS)正在为绿色银行望远镜(GBT)设计高功率的下一代行星雷达系统。作为一个试点项目,由RIS设计的低功率,KU波段发射器(在13.9 GHz时高达700 W)集成在GBO的100米GBT上,并在NRAO的TEN 25米长基线阵列(VLBA)Antennas上收到了雷达回声。这些观察结果产生了最高分辨率,基于地面的,合成的孔径雷达图像,在有史以来收集到的月球上的某些位置,提供了已销售的卫星的大小和旋转状态特征,并以21亿米的距离(〜5.5个月球距离)检测到近地球的小行星。设计工作继续以使用VLBA的500 kW,KU频段行星雷达系统的最终目标,使用VLBA和未来的下一代非常大的阵列(NGVLA)作为接收器,具有目标表征和成像的能力,用于太空情境/领域的意识和行星科学/行星科学/国防。作为近期的下一步,中等功率的KU波段发射器(至少为10 kW)的集成将在GBO/NRAO上开发端到端系统以进行实时雷达观测。1。引入空间意识,空间中自然和/或人为物体的预测知识和表征是美国(美国)空间活动的关键能力。在美国进行雷达天文学和行星防御的高功率雷达基础设施通常依靠国家科学基金会(NSF)的资产和国家航空航天及空间管理局(NASA)来执行这一任务。自2020年以来,波多黎各的Arecibo天文台威廉·E·戈登(William E. Gordon)望远镜倒塌,美国科学界对高功率雷达观察的访问已大大减少,从而使加利福尼亚州的70 m金石望远镜(DSS-14)在加利福尼亚州的高空网络中,仅在加利福尼亚州的一部分中,唯一的范围是一个范围的范围。在Arecibo崩溃时,Associtions Inc.(AUI)管理国家射电天文学观测站(NRAO)和绿色银行观测站(GBO),以及合作伙伴雷神智能与空间(RIS)刚刚使用100-m Robert C. Byrd Green Bank Telescope(gbt) 1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。 GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。 在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。详细信息在[1]中提供。在这里,我们讨论了2020年11月和2021年3月进行的GBT/VLBA雷达观察的实验和结果,以及针对高功率,下一代行星雷达系统的计划。NRAO/GBO/RIS团队目前正在开发的新技术具有直接解决和克服损失Arecibo望远镜造成的科学能力差距的潜力。除了实现前所未有的科学外,我们的下一代行星雷达系统还可以添加
1 IRCCS,Bambino Ges 儿童医院,00165 罗马,意大利; francesco.gesualdo@opbg.net (FG); elisabetta.pandolfi@opbg.net (EP); ilaria.campagna@opbg.net(IC); luisa.russo@opbg.net (LR); antonino.reale@opbg.net (AR); umberto.raucci@opbg.net (UR); livia.piccioni@opbg.net (LP); carlo.concato@opbg.net (抄送); marta.ciofdegliatti@opbg.net (MLCDA); alberto.villani@opbg.net (AV); albertoeugenio.tozzi@opbg.net (AET) 2 巴里大学生物医学科学与医学、肿瘤学系,70120 巴里,意大利; daniela.loconsole@uniba.it(DL);maria.chironna@uniba.it(MC)3 意大利国家卫生研究所传染病系,00161 罗马,意大利;antonino.bella@iss.it(AB);simona.puzelli@iss.it(SP)4 IRCCS 大学医院圣马蒂诺,16100 热那亚,意大利;andrea.orsi@unige.it(AO);3479731@studenti.unige.it(GG);donatella.panatto@unige.it(DP);icardi@unige.it(GI)5 罗马大学“Sapienza”医学-外科科学和转化医学系,00185 罗马,意大利;christian.napoli@uniroma1.it 6 罗马大学公共卫生和传染病系,00185 罗马,意大利; giovanni.orsi@uniroma1.it (GBO); ilaria.manini@unisi.it (IM) 7 意大利锡耶纳大学分子与发育医学系,53100 锡耶纳,意大利;emanuele.montomoli@unisi.it 8 疫苗评估 VisMederi Srl,53100 锡耶纳,意大利 9 意大利罗马圣安德烈亚大学医院医学指导,00189 罗马,意大利;valfonsi@ospedalesantandrea.it * 通信地址:caterina1.rizzo@opbg.net
AAUJ Arab American University of Jenin ABS Access and Benefit Sharing ABT Aichi Biodiversity Target ACSAD Arab Center for Studies of Arid Lands and Desertification ALECSO Arab League Educational, Cultural and Scientific Organization ANU An-Najah National University ARIJ Applied Research Institute of Jerusalem ATG Alternative Tourism Group BERC Biodiversity and Environmental Research Center BGCI Botanic Gardens Conservation International BI Birdlife International BISS Biodiversity Information Science and Standards BRC Biotechnology Research Center BU Bethlehem University BZU Birzeit University CAM Complementary and Alternative Medicine CAMRE Council of Arab Ministers Responsible for Environment CBD Convention on Biodiversity CCD Convention to Combat Desertification CEPA Communication, Education and Public Awareness Strategy CEPF Critical Ecosystem Partnership Fund CHM Clearing House Mechanism CITES Convention of International Trade in Endangered Species COP Conference of the Parties CMS迁徙物种CSO民间社会组织EDPS欧洲发展伙伴EE环境教育EEC环境教育中心EIA环境影响评估评估EQA环境质量机构欧盟欧盟粮食和农业组织GBF全球生物多样性框架GBIF全球生物多样性机构GBO全球生物多样性GRINEM GEL SENOMITY GEF GEM GMO GMO GMO GMO GMO GMO GMO GMO GMO主动性HSF Hanns Seidel基金会IAS侵入性外星物种Ibas重要的鸟类区域