I.引言国家航空航天管理局(NASA)的游戏改变开发项目(GCD)羽流相互作用(PSI)项目[1]旨在发展代理在预测PSI行为方面的能力。这包括关注计算流体动力学(CFD)模拟中利用模型的成熟[2]。这些CFD工具的验证和验证需要一组强大的数据,该数据表征与PSI相关的各种不同的物理行为。为此,PSI项目已开展了一个新的地面测试活动,称为物理浓缩距离测试(PFGT)[3]。PFGT是作为一个实验测试床开发的,其总体目标是生成对PSI相关物理学的计算流体动力学验证所需的数据[2,4-7]。PFGT的主要数据目标
ICEC要求用户输入直接飞行的原始机场和目的地(即飞行号没有更改的航班)。然后将其与已发布的计划航班进行比较,以获取用于为有关两个机场服务的飞机类型和每架飞机的出发人数。然后将每架飞机映射到336架同等飞机类型之一中,以根据旅程中涉及的两个机场之间的大圆距离(GCD)计算旅行的燃油消耗。从国际民航组织收集的流量和运营数据中获得的乘客负载系数和乘客到货物因子,然后应用以获取可归因于乘客的总燃料的比例。然后该系统计算出每种等效飞机类型的出发频率加权旅程的平均油耗。然后将结果乘以3.16,以获取CO 2(以kg)足迹的数量,归因于这两个机场之间的每个乘客。
到目前为止,使用 Shor 算法在量子计算机上分解的最大数字是 35。这张海报表明,在当前的量子计算机上使用该算法可以分解更大的数字。图中展示了数字 1031167 的因式分解以及 IBM 量子系统的结果。Shor 算法 [1] 于 1994 年提出,但直到现在量子技术才发展到可以实现它的水平。该算法的瓶颈是模幂函数 (MEF) 的实现,它是这张海报以及我的论文 [2] 的主题。该算法的量子部分的任务是找到 MEF f (x) = ax mod N 的周期 r(a 是适当选择的整数,N 是要分解的数字),为此,有必要构建和运行所谓的周期查找器量子电路。一旦找到周期 r,就可以使用以下公式计算因子:gcd( ar/ 2 ± 1 , N )。MEF 可以按以下方式分解:
摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。
• ASTM = 美国材料与试验协会 • ASU = 亚利桑那州立大学 • ATLAS = 先进地形激光高度计系统 • CATS = 云-气溶胶传输系统 • COTS = 商用现货 • DIY = 自己动手 • EEE = 电气、电子和机电 • FC = 现场连接器 • GCD = 改变游戏规则的发展 • GEDI = 全球生态系统动态调查 • GEVS = 通用环境验证标准 • GEO = 地球同步轨道 • GOES-R = 地球静止运行环境卫星-R 系列 • GLAS = 地球科学激光高度计系统 • GSFC = 戈达德太空飞行中心 • ICESat = 冰、云和陆地高度卫星 • InP PIC = 磷化铟光子集成电路 • ISS = 国际空间站 • JWST = 詹姆斯·韦伯太空望远镜 • LADEE = 月球大气尘埃环境探测器 • LED = 发光二极管 • LEO = 低地球轨道 • LiDAR = 光检测和测距• LIV=光-电流-电压 • LOLA = 月球轨道器激光高度计 • LRO = 月球侦察轨道器
本研究介绍了新型锡(IV)氧化物 /还原石墨烯(SNO 2 /RGO)纳米复合材料的合成和深入评估,作为晚期电化学超级电容器的电极材料开发了。利用具有优化参数的可扩展合成方法,由X射线衍射(XRD),透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征所得的纳米复合材料,揭示其明确定义的形态,晶体结构和组成。包括射流电荷 - 电荷 - 电荷 - 电荷 - 电荷障碍,电化学障碍光谱(EIS)(EIS)和环状伏安法(CV)的全面电化学评估表明,与纯SNO 2相比,SNO 2 /RGO表现出出色的性能指标。值得注意的是,在1 a g -1的电流密度下,SNO 2 /RGO纳米复合材料达到了140 f g -1的比电容,超过了纯SNO 2的133 f g -1。这些发现突出了SNO 2 /RGO纳米复合材料可显着增强储能能力的潜力,使其成为电动汽车,便携式电子设备和可持续能源系统应用的有前途的候选人。
1。戒指2 1.1。基本定义2 1.2。理想和商戒指4 1.3。环同态7 1.4。代数9 2。积分域13 2.1。基本定义13 2.2。独特的分解域(UFD)14 2.3。主理想域(PID)16 2.4。GCD和LCM 17 2.5。欧几里得域18 2.6。分数的场20 2.7。多项式环中的分解21 3。字段23 3.1。基本定义23 3.2。场扩展25 3.3。分裂字段和有限字段28 3.4。代数闭合字段29 3.5。用指南针和直码结构30 4。对称多项式33 4.1。判别35 5。模块36 5.1。定义和示例36 5.2。同构和子模型37 5.3。简单且难以解决的模块39 5.4。中文剩余定理41 5.5。PID 42 5.6上的模块。Noetherian模块44附录A.环形多项式45附录B. RSA算法47
或Q.02 A用例如示例解释多项式算术操作。l2 10m b解释欧几里得算法以找到两个数字的GCD。L2 10M模块2 Q. 03抽奖并解释对称密码系统的模型。 l2 10m b解释了安全性在网络中的应用。 l3 10m或Q.04 A解释安全性不同的换位技术。 l3 10m b解释替代技术。 L3 10M模块-3 Q. 05 A解释了带有整洁图L2 10M B的传统块密码结构,例如解释Euler的定理。 l2 100m或Q。 06 A提供了高级加密标准L2 10M B的一般结构的概述,描述了DES算法的整体方案及其无声特征。 L3 10M模块-4 Q. 07 A解释公开密码学的要求。 l2 10m b假设p = 17且q = 11,找到公钥和私钥。 纯文本消息块M = 88 执行加密和解密L2 10M模块2 Q.03抽奖并解释对称密码系统的模型。l2 10m b解释了安全性在网络中的应用。l3 10m或Q.04 A解释安全性不同的换位技术。l3 10m b解释替代技术。L3 10M模块-3 Q.05 A解释了带有整洁图L2 10M B的传统块密码结构,例如解释Euler的定理。l2 100m或Q。06 A提供了高级加密标准L2 10M B的一般结构的概述,描述了DES算法的整体方案及其无声特征。L3 10M模块-4 Q. 07 A解释公开密码学的要求。 l2 10m b假设p = 17且q = 11,找到公钥和私钥。 纯文本消息块M = 88 执行加密和解密L3 10M模块-4 Q.07 A解释公开密码学的要求。l2 10m b假设p = 17且q = 11,找到公钥和私钥。纯文本消息块M = 88
FACA公开会议,混合动力,上午8:30,美国东部时间概述,执行秘书,上午8:35 开幕词迈克尔·约翰斯(Michael Johns),主席上午8:40 Welcome to NASA's Glenn Research Center James Kenyon, Center Director, NASA Glenn 9:10 a.m. Space Technology Mission Directorate (STMD) Update Clayton Turner, Acting Associate Administrator, STMD 10:00 a.m. 2024 Shortfalls Ranking Process and Results Overview Alesyn Lowry, Director for Strategic Planning and Integration, STMD Michelle Munk, Acting Chief Architect, STMD 10:45 a.m. NASA核系统更新Anthony Calomino,太空核技术负责人,STMD Kurt Polzin,NASA太空核推进项目的首席工程师,NASA MARSHALL LINDSAY KALDON,NASA GLENN,NASA GLENN的Fission Surface Powers Manager,NASA Glenn 12:00 午餐休息和委员会年度道德简报下午1:30低温流体管理投资组合更新Lauren Ameen,低温流体管理投资组合项目副经理,NASA Glenn 2:15 pm。商业月球有效载荷服务Intuitive Machines-2技术演示概述Mark Thornblom,技术集成游戏更改开发(GCD)计划的副计划经理,NASA LangleyFACA公开会议,混合动力,上午8:30,美国东部时间概述,执行秘书,上午8:35开幕词迈克尔·约翰斯(Michael Johns),主席上午8:40Welcome to NASA's Glenn Research Center James Kenyon, Center Director, NASA Glenn 9:10 a.m. Space Technology Mission Directorate (STMD) Update Clayton Turner, Acting Associate Administrator, STMD 10:00 a.m. 2024 Shortfalls Ranking Process and Results Overview Alesyn Lowry, Director for Strategic Planning and Integration, STMD Michelle Munk, Acting Chief Architect, STMD 10:45 a.m. NASA核系统更新Anthony Calomino,太空核技术负责人,STMD Kurt Polzin,NASA太空核推进项目的首席工程师,NASA MARSHALL LINDSAY KALDON,NASA GLENN,NASA GLENN的Fission Surface Powers Manager,NASA Glenn 12:00午餐休息和委员会年度道德简报下午1:30低温流体管理投资组合更新Lauren Ameen,低温流体管理投资组合项目副经理,NASA Glenn 2:15 pm。商业月球有效载荷服务Intuitive Machines-2技术演示概述Mark Thornblom,技术集成游戏更改开发(GCD)计划的副计划经理,NASA Langley
一种两步催化的热解技术可用于从废物塑料和水热合成途径中产生氧化石墨烯(RGO),以产生NICO 2 O 4纳米棒和NICO 2 O 4 @WPRGO纳米复合材料。废物塑料衍生的还原石墨烯(WPRGO)提供了导电网络,并刺激了其表面上NICO 2 O 4纳米棒的生长,以增加电化学电荷存储性能期间电子的收集和运输。此技术使NICO 2 O 4 @WPRGO适用于超级电容器电极材料。使用2 M KOH溶液中的两个和三电极系统评估复合材料的电化学性能。NICO 2 O 4 @WPRGO材料的出色特定电容值及其对称的CV和GCD的对称原型电池约为1566 F G 1和400 F G 1(以2 mV s 1)和1105 F G 1和334 F G 1和334 F G 1(分别为0.5 A G 1),分别为0.5 A G 1)。此外,组装的对称和非对称电池的高能密度分别为17 W H Kg 1和45.08 W H Kg 1,分别为153 W kg 1和980 W kg 1的功率密度,以及在15,000 000和3000 cycles之后,高循环稳定性分别为86%和88.5%。