本报告由德克萨斯州环境质量委员会 (TCEQ) 和德克萨斯大学奥斯汀分校经济地质局 (BEG) 之间的分包合同 (合同编号 582-24-50122 工作订单 4) 编写,德克萨斯 A&M 大学自然资源研究所也参与其中。该项目源于参议院法案 1290 (SB 1290),该法案于 2023 年由第 88 届德克萨斯州立法机构通过。SB 1290 要求全面评估与安装、运行、拆除和处置太阳能电池板、风力涡轮机和储能系统相关的环境影响,特别是那些专注于发电和报废(也称为 EoL)的系统。本研究不包括采购或建造这些发电系统的影响。SB 1290 的全文包含在主报告的附录 A 中。我们的报告是与居民和公民团体成员、发电和回收公司代表、行业协会和研究组织的讨论的成果。我们阅读了同行评审的文献和其他技术报告,并参观了太阳能电池板回收业务。我们努力了解 SB 1290 中确定的特定生命周期阶段的当前知识状态以及它们如何影响环境和流域。我们确定了德克萨斯州地下水保护区 (GCD) 和河流管理局 (RA) 内现有和计划中的设施的位置。最后,该报告讨论了德克萨斯州与太阳能、风能和电池存储相关的当前监管框架,以及特定主题数据有限的领域。监管框架和环境保护
高导电性的金属有机骨架 (MOF) 已被证明是一种令人兴奋的储能设备电极材料。然而,大多数 MOF 表现出低电导率,这限制了它们在超级电容器中的使用。为了解决这个问题,采用一种简单的酸处理方法获得纳米花状镍 2- 甲基咪唑骨架 (Ni-MOF),以在不破坏其骨架的情况下提高电导率。用最佳 pH 值为 2 的硫酸 (H 2 SO 4 ) 溶液处理的样品 (Ni-MOF-2) 表现出改善的表面纹理和优异的电化学特性。Ni-MOF-2 样品在 6 M 氢氧化钾 (KOH) 水性电解质中在 1 A/g 时显示出比其他样品高的 467 C/g 的比容量 (C s )。这主要是由于酸处理后 Ni-MOF-2 中的质子传导增强。此外,还使用电池型 Ni-MOF-2 作为正极,使用富含杂原子的活性炭 (O、N、S@AC) 作为负极,制造了混合超级电容器 (HSC) 装置。制造的 HSC 的最大比容量 (C s ) 为 38 mAh/g,比能量 (E s ) 高达 39 Wh/kg,最大比功率 (P s ) 为 11,079 W/kg。此外,HSC 在 10,000 次连续恒流充电/放电 (GCD) 循环中表现出约 87% 的出色循环稳定性。
NASA MARSHALL太空飞行中心(MSFC)自2010年以来在液体火箭发动机组件设计,开发和测试中应用了各种形式的金属添加剂制造(AM)。这些AM技术降低了硬件成本,缩短制造时间表,通过减少关节数量来提高可靠性,并通过允许非常规设计来改善硬件性能。RAMFIRE项目,由太空技术任务局(STMD)游戏更改开发(GCD)计划资助,已与Elementum 3D合作进一步使用了新颖的AM Liquid Rocket喷嘴。该项目高级新型大型AM铝材料技术,可在火箭发动机和发射车中节省大量重量。以前,铝合金难以使用增材制造焊接和打印。Ementimum 3D的专利铝6061-RAM2合金允许使用各种AM技术和各种尺度打印铝合金。可以利用合金用于焊接线,显示出铝焊缝的急剧改善。The RAMFIRE project focuses on five key areas: 1) Laser Powder Directed Energy Deposition (LP-DED) AL6061-RAM2 feedstock specification and verification, 2) LP-DED process development and validation, 3) LP-DED printed AL6061-RAM2 microstructural and mechanical property characterization, 4) Hot-fire test a 5.4k-lbf thrust class regeneratively cooled nozzle, 5) Print large scale再生冷却喷嘴。热火测试通过提供相关环境将TRL级别提高到5/6范围,从而向NASA和潜在用户展示了高级空间技术的潜力。
定量能力期每周:2个总期限:30课程代码:LSC T14课程目标:旨在灌输定量分析技能和推理作为学生固有的能力。课程成果:成功完成本课程后,学生将能够;了解算术能力,定量能力,逻辑推理,业务计算和数据解释的基本概念,并获得相关的技能。获得使用言语推理的能力。应用在相关领域获得的技能和能力解决了与校园内外的定量能力,逻辑推理和口头能力有关的问题。单位 - 1:(10个时期)算术能力:代数操作BODMAS,方形根和立方根,分数,分数规则,单位数字,单位数字,因子总数,LCM和GCD(HCF)。单位 - 2:(10个时期)定量才能:平均值,比率和比例和比例,年龄,时间,距离和速度,火车上的问题。业务计算:百分比,利润与损失,合作伙伴关系,简单和复杂的利益,时间和工作,指控或混合物。单位 - 3:(10个时期)数据解释:制表,条形图,饼图,线图。教科书:1。R.S.Agrawal,S.Chand出版物。参考书:1。Showick Thorpe的分析技巧,由S Chand and Company Limited出版,新德里110055 2。R v Praveen的定量才能,Phi Publishers。3。链接:tata Mc Graw Hill出版物Abhijit Guha的竞争性考试的定量才能。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
收到2022年9月14日; 2023年3月23日接受; 2023年4月17日出版作者分支:1广州林业与景观建筑研究所,广州510405,中国公关; 2广东工业理工学院的生态环境技术学院,纳海校区,佛山528225,中国公关; 3州生物控制和广东植物资源主要实验室的国家主要实验室,生命科学学院,孙子森大学,广州510275,公关中国。*通信:changchao Xu,Xuchangchao12345@aliyun。com关键字:磷酸盐溶解化; T-DNA插入;烯醇酶。缩写:AD,任意退化底漆; ATMT,农杆菌Tumefaciens介导的转化;棒,伴侣抗性基因;凸轮,醋酸纤维素膜;挖掘,二高氧素蛋白; DW,干重; EGFP,增强的绿色荧光蛋白; GCD,葡萄糖脱氢酶基因; GFP,绿色荧光蛋白; GUS,β-葡萄糖醛酸酶; HPH,Hygromycin B磷酸转移酶基因; HPLC,高性能液相色谱; IM,感应培养基; LB,Luria – Bertani培养基; MES,2-(N- morpholino)乙磺酸; NCM,硝酸纤维素膜; PDA,马铃薯葡萄糖琼脂; PDB,马铃薯葡萄汤; PEG,聚乙烯乙二醇; PQQ,吡咯喹啉喹酮合成基因; PSM,磷酸盐溶解微生物; PVK,Pikovskaya Medium;尾-PCR,热不对称交错PCR; T-DNA,转移DNA。已将核苷酸烯醇酶基因的核苷酸序列和相应的cDNA序列沉积在国家生物技术信息中心(NCBI)核苷酸数据库(https://wwwww.ncbi.nlm.nlm.nih.gov/nuccore/)无访问量表上的核苷酸数据库(https://wwwww.ncbi.nlm.nih.gov/nuccore/)。001325©2023作者†这些作者同样为这项工作做出了同样的贡献,三个补充数据和本文的在线版本提供了两个补充表。
北京理工大学光学与光子学院,北京,100081,中国 电子邮件:yuanyue000418@163.com 收稿日期:2022 年 5 月 1 日/接受日期:2022 年 6 月 1 日/发表日期:2022 年 7 月 4 日 本文重点研究了碳和氮掺杂碳作为超级电容电极材料的制备、结构和电化学表征。电极材料是通过粉碎、氧化预处理和键合、碳化和活化制备的,聚合物材料加工成碳基材料。为了制备碳气凝胶电极材料,采用富氮前驱体方法通过氮掺杂来改变获得的碳基底材料。 SEM 和 XRD 对形貌和晶体结构进行分析表明,掺杂样品中引入了氮,碳电极表面覆盖着云状团簇和不均匀的聚集碳颗粒,而 N 掺杂碳样品具有海绵结构,其中交织着类似石墨的薄片,具有更高的粗糙度和孔隙率,以及更大的表面积。使用循环伏安法 (CV) 和恒电流充放电 (GCD) 循环对制备的碳基材料进行电化学研究表明,N 掺杂碳比对照样品具有更高的电化学电容性能,以及理想的快速充放电性能和功率器件的高功率容量。在 1 A/g 的电流密度下,碳和 N 掺杂碳的比电容分别为 13.56 和 192.12 F/g,这意味着 N 掺杂样品的比电容比未掺杂材料提高了 14 倍。经过 10000 次循环后,N 掺杂碳的循环稳定性显示出几乎 108% 的电容保持率。根据 N 掺杂碳超级电容电极性能与早期关于超级电容器中多孔碳材料的报道的比较,N 掺杂碳超级电容电极的比电容、功率和能量密度与其他报道的 N 掺杂多孔碳结构的值相当或更好。这些测试表明,使用所述方法生成的氮掺杂碳电极材料具有较低的内阻,并且可以在超级电容器中保持良好的电化学性能。关键词:氮掺杂碳;电化学性能;富氮前体;超级电容电极材料
突破性、创新性和改变游戏规则 (BIG) 创意挑战赛是一项支持 NASA 空间技术任务理事会 (STMD) 改变游戏规则发展计划 (GCD) 努力的计划,旨在迅速成熟创新性和高影响力的能力和技术,以应用于未来的广泛 NASA 任务。BIG 创意挑战赛允许学生将他们的课程作业融入到真实的航空航天设计概念中,并在团队环境中一起工作。BIG 创意挑战赛还为大学生提供了开发支持 NASA 探索目标所需系统的真实经验。为此,国家太空资助学院和奖学金项目通过利用资金来支持该挑战赛,帮助培养下一代 STEM 培训的劳动力,他们的技能和经验与 STMD 技术重点领域和能力需求直接相关。BIG 创意挑战赛面向获得认可的美国学院和大学的本科生和研究生团队开放,这些学院和大学必须正式隶属于其所在州的太空资助联盟。但是,非太空资助附属学院和大学可以与太空资助附属学术机构合作。NASA 认识到拥有多元化和包容性的科学、工程和技术社区的好处,并希望在 BIG Idea Challenge 中体现这种价值观。因此,鼓励多所大学和跨学科团队。也强烈鼓励少数族裔服务机构通过与太空资助附属大学合作申请或参与。2024 年 BIG Idea Challenge 为大学团队提供了设计、开发和展示用于月球作业的低尺寸、重量和功率 (SWaP) 充气技术、结构和系统 * 的新用途的机会。邀请团队提交提案,以支持 NASA 的长期目标,即通过使用他们的技术与阿尔忒弥斯一起在月球表面进行持续的载人航天和科学任务。 * 适用排除条款。请参见下文。本次比赛旨在成为一项限制最少的开放式创新挑战,以便提案团队能够真正创造和开发开箱即用的解决方案。根据对详细提案的审查,预计将选出 4-7 个大学团队(每个团队的主要机构必须是太空资助附属学校)来构建和展示他们提出的充气系统概念。每个团队将在其提案中提交详细且切合实际的预算,不超过 15 万美元。预计奖励金额范围很广(在 5 万美元到 15 万美元之间),具体取决于所提议的工作范围。我们预计将资助几个较大范围的奖励(10 万美元到 15 万美元)和几个较小范围的奖励(5 万美元到 9.9 万美元)。鼓励提案人请求开展拟议工作所需的实际资金。为了最大限度地提高 NASA 的投资回报率 (ROI),评委将仔细考虑成本作为确定提案整体价值的重要因素。
热带密码学 - 艺术状态和1个未来的前景2 3第一篇论文引入了在公共密钥4密码学中使用热带时间的使用。从那时起,已经提出了许多热带方案5,并结合了各种愿意的半肌。用于加密目的的最常用的6个常见的愿望是7分钟以上和最大值的半连接,其中一些方案还利用了最大8个时间和最小时间的半时间。确保9这些方案的安全性的主要数学问题包括热带离散对数问题10(热带DLP),热带半群动作问题(热带SAP),11个热带半领产品问题;在热带半光中求解双面线性12系统的问题;热带多项式分解并发现了13个最大的常见分裂(GCD)问题,以及热带基质功率14功能问题(热带MPF)。不幸的是,大多数提出的15种热带计划已成功攻击,这引起了人们对热带密码学的16个未来的担忧。在这项工作中,我们回顾了现有的热带17个方案,讨论潜在问题的复杂性,检查当前对这些方案的18次攻击,并探索基于热带半决赛的19个密码学的未来前景和方向。20 21关键字:半半,热带半肌,热带密码学,热带22个问题,加密攻击。23 24 25引言26 27范迪弗(Vandiver,1934年)引入了半条,但很长一段时间以来,数学家一直没有注意到他们的28个半条。该理论通过替换真实47半少数在29个不同的领域中找到应用,包括自动机理论,形式语言,有限状态30台机器,可识别的语言,语音识别和图像压缩。31用于研究计算机32个程序的正确性和有效性的正式系统,例如动态代数,Hoare代数和Kleene代数,与各种半段密切相关。div>势力桥梁代数34形式主义以及动态和时间逻辑,从而实现了计算机程序和过渡系统的属性35的建模。此外,半序在大规模的科学应用中发挥了36个至关重要的作用,包括线性代数计算的高维37个数据和图分析。38热带代数是由Cuninghame-Green(1979)提出的,而39术语Idempotent分析是由Victor Maslov(1986)提出的。为纪念巴西数学家Imre Simon而创造了40个热带,他的41件作品(Simon,1988)为热带代数奠定了重要的基础。在热带42代数,热带添加意味着最小或最大为两个43个数字,而热带乘法对应于通常的添加。通过45个半度的框架进一步开发了44个热带代数的概念,从而形式定义了热带46个半度的代数结构。