摘要 — 在 SiC 晶片上设计、制造和测量了不同几何形状的基片集成波导 (SIW),以及基于 SIW 的谐振器、基于 SIW 的滤波器、接地共面波导 (GCPW)、GCPW-SIW 过渡和校准结构。使用两层校准从 GCPW 探测的散射参数中提取固有 SIW 特性。由此产生的 D 波段 (110-170 GHz) SIW 表现出创纪录的低插入损耗 0.22 ± 0.04 dB/mm,比 GCPW 好四倍。3 极滤波器在 135 GHz 时表现出 1.0 dB 的插入损耗和 25 dB 的回波损耗,这代表了 SiC SIW 滤波器的最新水平,并且比 Si 片上滤波器好几个数量级。这些结果显示了 SIW 有望在同一 SiC 芯片上集成 HEMT、滤波器、天线和其他电路元件。关键词 — 腔体谐振器、微波滤波器、毫米波集成电路、半导体波导
摘要 — 本文提出了一种高效宽带毫米波 (mm-Wave) 集成功率放大器 (PA),该放大器采用了基于低损耗槽线的功率组合技术。所提出的基于槽线的功率合成器由接地共面波导 (GCPW) 到槽线的过渡和折叠槽组成,可同时实现功率合成和阻抗匹配。该技术提供了一种宽带并联-串联合成方法,可增强毫米波频率下 PA 的输出功率,同时保持紧凑的面积和高效率。作为概念验证,我们在 130 nm SiGe BiCMOS 后端 (BEOL) 工艺中实现了紧凑的四合一混合功率合成器,从而使芯片面积小至 126 µ m × 240 µ m,测量的插入损耗低至 0.5 dB。3 dB 带宽超过 80 GHz,覆盖整个 G 波段 (140-220 GHz)。基于此结构,采用 130 nm SiGe BiCMOS 技术制作了高效毫米波 PA。三级 PA 实现了 30.7 dB 的峰值功率增益、40 GHz 的 3 dB 小信号增益带宽(从 142 GHz 到 182 GHz)、测量的最大饱和输出功率为 18.1 dBm,峰值功率附加效率 (PAE) 在 161 GHz 下为 12.4%。极其紧凑的功率合成方法使核心面积小至 488 µ m × 214 µ m,单位芯片面积的输出功率为 662 mW/mm 2 。
a)应向其通信的作者:ll886@cornell.edu摘要用于毫米波电源应用,GAN高电子移动晶体管(HEMTS)通常在高纯度半胰岛的C轴c-轴4H-SIC 4H-SIC substrate上表现出现。对于这些各向异性六边形材料,微带和共浮标互连的设计和建模都需要详细了解普通介电常数ε⊥和非凡的介电常数ε||分别垂直于c轴。但是,常规的介电特性技术使得很难测量ε||单独或分开ε||来自ε⊥。结果,ε||几乎没有数据,特别是在毫米波频率下。这项工作演示了表征ε||的技术使用底物集成的波导(SIWS)或SIW谐振器的4H SIC。测得的ε||从110 GHz到170 GHz的七个SIW和11个谐振器中,在10.2的±1%以内。因为可以将SIW和谐振器与Hemts和其他设备一起在相同的SIC基板上制造,因此可以在磁力上方便地测量它们,以进行精确的材料磁盘相关性。这种介电常数技术可以扩展到其他频率,材料和方向。高纯度半胰岛六轴六边形4H SIC 1通常用作通过微带传输线(微一起)或接地的Coplanar saveguides(GCPWS)相互连接的毫米波GAN高电动型晶体管(HEMTS)的底物。1)。尽管“静态”ε⊥和ε||这需要精确了解SIC在毫米波频率下的电渗透率,以准确预测沿传输线的波浪的传播延迟和衰减。例如,在微带或GCPW上行进的准电磁(准TEM)波由普通介电常数ε⊥和非凡的介电常数ε||控制。分别垂直和平行于C轴(图