图 1. 有效去除宿主基因组 DNA,同时不降低噬菌体 DNA 产量。使用 Norgen 的噬菌体 DNA 分离试剂盒从四种富集噬菌体培养物中分离总 DNA。在添加提供的裂解缓冲液之前进行 DNase I 预处理。简而言之,将 20 单位 DNase I 添加到 1 mL 富集噬菌体培养物中,并将混合物在室温下孵育 20 分钟。DNAase I 处理后,按照程序进行。作为对照,使用 Norgen 的噬菌体 DNA 分离试剂盒从相同 4 种培养物的等分试样中分离 DNA,而无需进行 DNase I 处理。对于 DNA 分析,将每 50 µL 洗脱液中的 10 µL 上样到 1X TAE 琼脂糖凝胶上。可以看出,噬菌体 DNA 被其外壳蛋白安全地保护起来,免受 DNase I 处理的影响,而宿主基因组 DNA 则被 DNase I 有效降解。因此,DNase I 预处理导致最终噬菌体洗脱中宿主 gDNA 污染较少,而不会影响总噬菌体 DNA 产量。M 号泳道为 Norgen 的 Highranger 1 kb DNA Ladder(货号 11900)
图1。在去除RNase和dNase中,MP生物医学Nuc-Off核酸酶和DNA去除喷雾剂和竞争者T溶液的性能比较。A. RNase消除。在室温下孵育5分钟,将4μl的去除试剂和不同量的RNase(以1μl为单位)的混合物孵育;之后,加入1μlRNA,并在室温下进一步孵育15分钟,然后在含有甲醛的琼脂糖凝胶中变性和最终混合物的电泳。B. DNase消除。在室温下孵育4μl的去除试剂和不同量的DNase(以1μl)的混合物5分钟;之后,将1μl10X反应缓冲液和1μgDNA和无核酸酶的水加入总体积10μl,并在室温下进一步孵育15分钟,然后是最终混合物的琼脂糖凝胶电泳。C.去除试剂对DNA稳定性的影响。在室温下孵育15分钟,将4μl的去除试剂和1μl基因组DNA的混合物进行孵育,然后通过琼脂糖凝胶电泳进行分析。D.去除试剂对RNA稳定性的影响。在室温下孵育4μl的去除试剂和1μlRNA的混合物,然后变性添加含有甲醛的琼脂糖凝胶电泳。此处显示的图仅供参考,它可能会根据不同的实验条件而有所不同。
微污染物的去除效率在不同的有氧废水处理厂有很大变化,从而导致其在地表和地下水中经常检测。季节性温度变化是影响植物性能的主要因素,但目前尚不清楚温度变化的延长时期如何影响微生物组和微污染物生物转化。这项工作研究了活性污泥系统中长期温度变化对微生物动力学的影响,以及对微污染物生物转化的影响。测序批次反应器用作模型系统,研究了4 - 40℃的温度范围。16S rRNA扩增子测序表明,温度驱动微生物结构(GDNA)和活性(RNA),而不是时间,并且在15°C低于15℃和高于25℃的情况下,微生物群落在20℃时具有最丰富,更多样化,而在急剧和更具体的分类中则占优势,并且更具体的分类占高度的高度,以更高的时间高度高度的温度,并且占优势。这表明较少的分类单元可能负责在极端温度下维持活化污泥中的生物转化能力。微施加剂生物转化速率主要偏离15℃以下的经典Arrhenius模型,高于25℃,这表明长期暴露于温度变化会导致温度引起的分类转移,从而导致不同的生物转化途径超过不同温度范围的不同集合。
Monarch 组织 HMW DNA 提取试剂盒提供了一种快速可靠的方法,可从各种组织和细菌以及其他样本类型(包括酵母、昆虫和两栖动物)中提取高分子量 (HMW)、完整的基因组 DNA。优化的组织提取方案利用杵均质化和蛋白酶 K 消化并搅拌以裂解样品,然后进行蛋白质去除步骤并将提取的 DNA 沉淀到大玻璃珠的表面上。稍微修改的细菌提取方案利用溶菌酶在蛋白酶 K 消化之前有效裂解细菌细胞壁。对于标准方案,DNA 大小范围为 50 – ≥ 500 kb,可以调整以产生更长的 DNA,使其达到 Mb 范围,适用于软器官组织和细菌。纯化的 DNA 产量高,纯度极佳,几乎完全去除了 RNA。对于组织和细菌,处理时间约为 90 分钟。组织和细菌的纯度比通常为 1.8-1.9 (A 260 /A 280 ) 和 2.1-2.5 (A 260 /A 230 )。纯化的 HMW gDNA 适用于各种下游应用,包括长读测序 (Oxford Nanopore Technologies ® 和 Pacific Biosciences ® )、光学映射 (Bionano Genomics ® ) 和链接读基因组组装 (10X Genomics ® )。
图 1. 有效去除宿主基因组 DNA,且不降低噬菌体 DNA 产量。使用 Norgen 的噬菌体 DNA 分离试剂盒从四种富集噬菌体培养物中分离总 DNA。在添加提供的裂解缓冲液之前进行 DNase I 预处理。简而言之,将 20 单位 DNase I 添加到 1 mL 富集噬菌体培养物中,并将混合物在室温下孵育 20 分钟。DNAase I 处理后,遵循该程序。作为对照,使用 Norgen 的噬菌体 DNA 分离试剂盒从相同 4 种培养物的等分试样中分离 DNA,而不进行 DNase I 处理。对于 DNA 分析,将每 50 µL 洗脱液中的 10 µL 上样到 1X TAE 琼脂糖凝胶上。可以看出,噬菌体 DNA 被其外壳蛋白安全地保护起来,免受 DNase I 处理的影响,而宿主基因组 DNA 则被 DNase I 有效降解。因此,DNase I 预处理导致最终噬菌体洗脱中宿主 gDNA 污染较少,而不会影响总噬菌体 DNA 产量。M 号泳道为 Norgen 的 Highranger 1 kb DNA Ladder(货号 11900)。
目的:这项研究的目的是分析来自诊断为先天性甲状腺功能减退症(CH)的CAT的甲状腺过氧酶(TPO)基因的不同片段的序列。材料和方法:由于您的流血刺激激素和低T4的血清浓度高,因此被诊断为猫科动物。从具有CH的狗的TPO基因中含有突变的序列的分析允许预测受影响CAT中基因中的突变位点。此外,基于聚合酶链反应测试的设计还可以放大和测序这些基因段。此外,在患者死亡后,进行了死灵病和组织病理学,寻找受影响器官的宏观和微观改变。结果:尸检检查表明甲状腺的心脏同心左心室高奖杯和甲状腺的双侧增大。甲状腺的组织病理学表现出卵泡性发育不全和低胶体产生。gDNA分析允许检测TPO基因中的突变,该突变与位于核苷酸14.627(G/A)中的核苷酸12.542(a> g)中的一个过渡相对应,在核苷酸和核苷酸30.713(g/c)中。结论:由于存在这些多态性,因此怀疑存在一种突变等位基因的单相表达。需要进行更多的研究,以了解杂合中杂合中的作用,以及与CH在CAT中相关的基因突变的作用。另一方面,本研究的数据是开发分子测试的基础,该测试可以快速准确诊断猫中的HC。
收到日期:2021 年 9 月 30 日;接受日期:2022 年 3 月 6 日;发布日期:2022 年 5 月 13 日 作者隶属关系:1 中佛罗里达大学,4110 Libra Drive,奥兰多,佛罗里达州 32816,美国;2 约翰霍普金斯大学彭博公共卫生学院,415 North Washington Street,巴尔的摩,马里兰州 21231,美国。 *通讯作者:Catherine G. Sutcliffe,csutcli1@jhu.edu 关键词:携带;基因组流行病学;美洲原住民;系统发育;金黄色葡萄球菌。缩写:AN,前鼻孔;CA-MRSA,社区相关耐甲氧西林金黄色葡萄球菌;CC,克隆复合体;CI,置信区间;gDNA,基因组 DNA;IHS,印度健康服务局;IRB,机构审查委员会; MLST,多位点序列分型;MRSA,耐甲氧西林金黄色葡萄球菌;MSSA,甲氧西林敏感金黄色葡萄球菌;NP,鼻咽癌;ONT,牛津纳米孔技术;OP,口咽癌;PR,患病率;SCC mec,葡萄球菌盒式染色体 mec ;ST,序列类型;WGS,全基因组测序。‡现地址:美国辉瑞公司全球肺炎球菌疫苗、科学事务和流行病学部。金黄色葡萄球菌基因组序列的 NCBI SRA 接入号在补充文件 S1 中给出。†这些作者对这项工作贡献相同数据声明:所有支持数据、代码和协议均已在文章中或通过补充数据文件提供。本文的在线版本提供一个补充文件和四个补充表格。 000806 © 2022 作者
重印和许可信息可在 http://www.nature.com/reprints 上找到。通信和材料请求应发送至 Yogesh Goyal 或 Arjun Raj。yogesh.goyal@northwestern.edu;arjunrajlab@gmail.com。作者贡献 YG 和 AR 构思并设计了这个项目。YG 设计、执行和分析了所有实验,由 ARMP 监督,GTB 和 EIG 协助 YG 进行 FateMap 实验和分析。RHB、PTR、JL 和 MP 协助 YG 进行批量 RNA-seq 实验和分析。MP 根据 YG 和 ARIPD 的意见对修订进行了特定分析,GTB、SSA、EIG、MCD 和 CC 协助 YG 进行组织切片以及自动 RNA FISH 和 DAPI 扫描和分析。YG、BE 和 KK 设计并优化了 PCR“副反应”引物,以从 scRNA-seq 文库中恢复条形码。 RHB、GTB 和 JL 提取了 gDNA 用于 WGS 实验,NB 在 YG 的输入下进行了 WGS 分析,ARAK 协助 YG 设计和实施球体实验。GTB、NJ、JL、JB、MP 和 IAM 协助 YG 准备条形码库并完成计算流程。YG 设计了小鼠条形码实验,DF、HL、YC、GMA 和 MEF 在 YG、MH、AR 和 ATWYG 的输入下进行了小鼠实验,GTB 为小鼠实验准备了条形码库。MC、RHB、RGW、RL、DRI、SBJ、KW、MP、AJL 和 JAW 在 YG 和 ARYG 的输入下进行了人类患者实验和分析,GTB 和 EIG 准备了本研究中使用的所有插图。YG 和 AR 在所有作者的帮助下撰写了手稿。
修改的方案向导®基因组DNA纯化试剂盒的基因组纯化试剂盒通过离心在10ml颗粒2ml中通过离心在13,000 rpm 1以13,000 rpm 1恢复5分钟,在540 µl EDTA中重悬于540 µl的EDTA中,在50 mm,PH 87 µL,pH 30 µl,在10 mg lysozeme中,lysozym/c在10 mL在13,000 rpm丢弃的13,000 rpm处离心3分钟,将沉淀物恢复为600 µl的“核酸溶液”(来自KIT),并在80°C下混合热量5分钟(允许下一步冷却至下一步)加入3 µL RNase(从KIT中)添加3 µL RNase(从KIT中)在37°C下添加200 µL,并加入200 µL(oft of kit)(oft of of kit),并加入200 µL(oft of of of kit)(oft of of Kit)。 ice for 5 min Centrifuge for 3 min at 13,000 rpm TRANSFER supernatant to a 1.5 mL tube Add 600 µL isopropanol at ambient temperature Mix by inverting the tube Centrifuge for 3 min at 13,000 rpm DISCARD the supernatant 2 Add 600 µL of 70% ethanol at ambient temperature Centrifuge for 3 min at 13,000 rpm 3 DISCARD ethanol Dry pellet at 37°C在50-100 µL的水或洗脱缓冲液中重悬于gDNA(套件):如果需要更多的DNA,则每个培养物多个管子以上一个管。这些可以在较小的体积中洗脱,并在洗脱步骤中合并。根据细菌菌株以达到所需的DNA量,提取1至4个颗粒可能是必需的。2 DNA颗粒可能并不总是可见。乙醇洗涤通常会显示出更长的3个离心机,如果白色颗粒保持松动,以促进收集干净的上清液。QC
准确的DNA定量是下游应用的关键,包括整个基因组测序(WGS)的文库制剂和定量PCR标准标准的定量。两种用于核酸定量的常用技术基于纳米体和荧光测定法,例如量子计量法。DS – 11+系列光谱 - 光度计/荧光计(Denovix)是一种基于紫外分光光度计的仪器,是一种相对较新的分光光度计方法,但尚未与已建立的平台进行比较。在这里,我们比较了三个DNA定量平台,包括两个基于紫外线的技术(Denovix和Nanodrop)和一个基于荧光测定法的方法(QUBIT)。我们使用了使用Roche DNA提取试剂盒从肺炎链球菌中提取的基因组原核DNA。我们还评估了单个冻融周期的纯度评估和效果。基于分光光度法的方法报告了在冷冻之前和之后的量子量比量子的平均DNA浓度高3至4倍。一方面通过分光光度法评估的DNA浓度的比率是A 260/280的功能。如果DNA纯化(1.7和2.0之间的260/280),则比率Denovix或纳米旋转与量子量的比率接近或等于2,而该比率显示出DNA的倾斜度,而DNA的倾斜度为260/280值> 2.0。A 260/280和260/230的纯度比在分光光度法和冻结条件之间表现出可忽略的变化。冻结前后的DNA浓度的比较显示,每种技术没有统计学上的显着差异。denovix表现出最高的长矛相关系数(0.999),其次是纳米体(0.81)和Qubit(0.77)。在夏季,在估计的gDNA浓度s中,denovix和nanodrop之间没有差异。肺炎和分光光度法方法估计接近或等于浓度高2倍。