药物滥用是全球范围内的严重健康问题,造成了医疗、社会和经济问题,而药物治疗方法却极为有限。1,2 成瘾性药物针对大脑成瘾中心的中脑皮质边缘多巴胺 (DA) 系统,包括腹侧被盖区 (VTA)、前额叶皮质和伏隔核 (NAc)。腹侧被盖区包含最大的多巴胺神经元群,在奖励相关和目标导向行为(如认知和情绪过程)中起着重要作用。3 将 GDNF 注入腹侧被盖区 (VTA)(一个对成瘾很重要的多巴胺能大脑区域)可阻止对慢性可卡因或吗啡的特定适应以及可卡因的奖励效应。 4 可能在这种保护机制中发挥关键作用的一个因素是神经胶质细胞源性神经营养因子 (GDNF),它是中脑多巴胺 (DA) 神经元发育和残留的主要生长因子。 5 最近的研究表明,GDNF 被认为是某些成瘾类型的负调节因子。 6–8 具体来说,我们之前发现一些 miRNA 在腹侧被盖区 (VTA) 和伏隔核中甲基苯丙胺滥用中起关键作用。我们发现 miRNA 上调了 GDNF 基因。在这项研究中,我们旨在展示 GDNF 靶基因网络。
帕金森病 (PD) 是一种常见且使人衰弱的神经退行性疾病,其源于多巴胺能神经元的损失,并伴有进行性运动功能障碍。神经胶质细胞衍生的神经营养因子 (GDNF) 在治疗 PD 和其他神经病方面非常有前景。在本研究中,我们应用 CRISPR/Cas9 技术开发了一种基因靶向敲入系统,用于在牛 β-酪蛋白基因位点表达人类 gdnf 基因。构建了 CRISPR/Cas9 表达质粒和 pP40-GN 载体。使用组织外植体法培养和收集牛胎儿成纤维细胞。然后将 pP40-GN 和 CRISPR/Cas9 载体电转染到牛胎儿成纤维细胞中。使用 G418 筛选抗性克隆,同时通过 PCR 分析和 PCR 产物测序鉴定目标克隆。采用耳组织阻断法成功分离培养牛胎儿成纤维细胞,将pP40-GN靶载体和CRISPR/Cas9表达载体共转染牛胎儿成纤维细胞,经7天G418筛选,共获得12个健康、分离良好的细胞克隆,其中5个发生基因打靶事件。本研究为利用基因打靶牛乳腺生物反应器生产人GDNF蛋白奠定了基础,为PD的靶向治疗提供了新的策略。
1 美国芝加哥拉什大学医学中心神经科学系;8 2 美国芝加哥杰西布朗退伍军人医疗中心研究与开发部 9 10 11 12 通讯地址:13 Kalipada Pahan,博士14 神经科学系 15 拉什大学医学中心 16 1735 West Harrison St, Suite Cohn 310 17 芝加哥,伊利诺伊州 60612 18 电话:(312) 563-3592 19 传真:(312) 563-3571 20 电子邮件:Kalipada_Pahan@rush.edu 21 22 23 页数:30 24 25 图表数量:8 26 27 表格数量:2 28 29 摘要字数:233 30 31 引言字数:425 32 33 讨论字数:1095 34 35 利益冲突:无 36 37 致谢:本研究得到美国医学会优秀奖(1I01BX003033)的支持 38退伍军人事务部和 NIH 向 KP 提供的资助(NS083054 和 NS108025)。39 此外,Pahan 博士还获得了退伍军人事务部颁发的“研究职业科学家奖”(1IK6 BX004982)。40 41 42 43 44
神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
摘要:耳鸣的病因结合了遗传性和环境因素。为了帮助开发耳鸣的最佳疗法,有必要表征病理生理学的遗传因素并在基因水平上设计治疗方法。内耳基因疗法涉及将基因递送到内耳的前庭或听觉部分,以在感觉上皮或第八神经神经元的水平上进行预防或修复疗法。BDNF和GDNF是被证明被基因疗法过表达的神经营养因素之一,并保护内耳免受创伤。与AD.GDNF和电刺激合并的处理可增强对未经螺旋神经元神经元的保存。使用病毒载体用于基因治疗可能涉及副作用,包括对病毒蛋白的免疫反应。免疫抑制药物治疗可以减少腺病毒介导的基因治疗的负面后果。关键词:腺病毒基因疗法;增长因素;毛细胞;遗传性内耳疾病;螺旋神经节;耳鸣
啮齿动物模型和人类模型之间具有实际解剖结构存在几个差异,因此与实际的人类细胞一起使用非常重要。为此,他们将human的皮肤细胞从SPG4 HSP患者中进行,将其重新编程为人类诱导的多能干细胞(HIPSC),并将其变成胚胎体,然后将它们通过后肌电(SB431542),SB431542 EGF,BFGF神经诱导造成八种不同类型的人类细胞。1。chir,胰岛素,B27就像人类大脑(无区域身份)一样。2。bdnf,nt3,iwp-2喜欢人类前脑中的那些。3。转移蛋白,孕酮,GDNF就像人类脑干中的那些一样。4。wnt3a,pms,shh,就像在人类中脑中发现的那些一样。5。视黄酸,GDF-11,就像在人脊髓中发现的那些。6。FGF19,SDF1类似于人类小脑中的SDF1。 7。 bmp-7喜欢中的那些FGF19,SDF1类似于人类小脑中的SDF1。7。bmp-7喜欢
抑郁症是一种主要的神经精神疾病,可严重影响个人的社会心理功能和生活质量。神经营养因子现在与抑郁的发病机理有关,而定义的神经营养基础仍然难以捉摸。此外,植物疗法是常规抗抑郁药的替代品,可以最大程度地减少不良反应。因此,高度需要对神经营养因素与抑郁症与植物化学物质之间的相互作用进行进一步研究。这篇综述强调了神经营养因素在抑郁症中的影响,重点是脑源性神经营养因子(BDNF),艾尔比尔细胞线衍生的神经营养因子(GDNF),血管内皮生长因子(VEGF)和NEVER生长因子(NGF)和静态ph剂的各种活动,以及各种活动,神经营养因素。此外,我们为抑郁症的新型诊断和治疗策略提供了未来的机会,并为该领域的挑战提供了解决方案,以加速神经营养因素的临床翻译以治疗抑郁症的治疗。
专业上皮对于维持循环至关重要,并报告说,上皮中KEAP1的缺失将导致小鼠肾结通(Noel等,2016)。但尚不清楚什么是主要贡献者,不同细胞类型之间的协同相互作用可能对维持肾脏功能至关重要。许多基因涉及维持正常肾功能,例如CLMP和GFRA3。以前的一个在肾脏发育中起重要作用,它的缺失将导致严重的双侧肾积水(Rathjen和Jüttner,2023年)。后者是GDNF家族受体的成员,GDNF是一种分泌的分子,并参与输尿管萌芽(Uetani and Bouchard,2009年)。其他转录因子,例如gata3,lim1,对于肾脏结构也很重要(Chia等,2011)(Boualia等,2013)。小鼠胚胎中GATA3突变会在出生时引起肤色,这表明GATA3因子是尿路突变所必需的(Chia等,2011)。FOXF1是肺发育的另一个因素,也发现突变导致肾结通(BZDęGA等,2023)。通过肾积水中探索了几乎没有潜在的关键基因或转录因子,潜在的遗传机制仍在进一步研究。最近的研究表明,调节元件中染色质状态的变化在基因表达中起着至关重要的作用,并可能导致严重疾病(Mirabella等,2016)(Klemm等,2019)。尽管如此,我们仍然对肤色期间异常组织和正常组织之间染色质状态的改变的了解有限。全面理解肤色中的基因表达和相关调节网络将有助于我们识别发病机理并发现疾病的新疗法靶标。我们试图在这项研究中检测正常和肾脏症之间的差异表达基因(DEG),然后探索疾病的表观遗传变化,包括ATAC-SEQ检测到的DNA甲基化预测和相关的调节元件,检测到了差异性可及的区域(DARS)(图1A)。为了可视化Hub-Gene在肾积水中,我们还通过String构建了蛋白质 - 蛋白质网络(PPI)。为了验证获得的DEGS和DARS之间的潜在关系,我们进一步检测到DEG和DARS之间的染色质结构,试图在肾结通中填充调节机制。
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
b)单细胞转录组分析显示了肠道的不同上皮细胞类型。左图显示了UMAP可视化,其中细胞根据其鉴定的细胞类型对颜色编码。插图图是UMAP簇的覆盖层,其箭头表示单元类型之间的谱系关系。右侧的小提琴图显示了在TCF7L2 WT/WT和TCF7L2 Flox/Flox小鼠之间比较的识别簇中关键谱系标记的差异表达;基因表达水平在y轴上指示。alpi,碱性磷酸酶,肠; ATOH1,Atonal BHLH转录因子1; defa5,防御5; Fabp1,脂肪酸结合蛋白1; GFRA3,GDNF家族受体alpha 3; LGR5,富含亮氨酸的重复G蛋白偶联受体5; MMP7,基质金属肽酶7; MKI67,扩散标记KI-67; MUC2,粘蛋白2; Neurog3,Neurogenin 3; OLFM4,橄榄毒素4; Reg4,重生家庭成员4; SPDEF,SAM指向包含ETS转录因子的域; Spink4,丝氨酸肽酶抑制剂Kazal 4型; TFF3,Trefoil因子3。