摘要:在过去十年中,电化学 CO 还原 (COR) 系统的可访问活动数量级增加了,特别是通过实施气体扩散电极 (GDE) 架构。随着 GDE 的有效几何面积(cm 2 到 m 2 )的扩大,反应器性能可能会因物理和化学空间变化而发生变化,而多相和多产品电化学系统的化学复杂性使这种变化变得复杂。这项工作通过多端口采样反应器测量和评估 COR 性能指标,以测量 COR GDE 通道下游的反应物和产物浓度。研究发现,氢气析出反应 (HER) 的法拉第效率 (FE) 在通道下游增加,这主要是由于 CO 分压的降低,而乙烯的选择性在通道下游保持相对恒定。这项工作强调了随着电化学反应器的物理扩大,性能的不均匀性,对 COR 和 CO2R 系统的未来扩展具有重要意义。R
2. 背景 7 2.1 政府政策和目标 8 2.2 工业挑战、重大挑战和挑战基金 8 2.3 NHS - 并非单一的国家机构 9 - 四国 - 地区差异 2.4 NHS 和数字化转型 11 - NHS 的 IT 计划和“取消传真” - 全球数字典范 (GDE) 和蓝图 2.5 英国共享健康数据的方法 13 - 健康数据研究 (英国) 2.6 NHS 长期计划和 NHSX 15 2.7 行为准则和良好实践指南 16 2.8 数字健康技术和 DTAC 的证据标准框架 17 2.9 人工智能在 NHS 中的当前和拟议作用 18 2.10 将技术引入系统 19 - 健康和护理领域的人工智能奖 - AAC 和 Healthtech Connect - 加速器和孵化器 2.11 COVID-19 20 - NHS重置和健康不平等 2.12 2020 年技术计划 21
通过开放式电池设计将阴极与空气连接起来的必要性与开发挑战有关。首先,锂金属与水反应剧烈,因此需要非水电解质。此外,需要通过透气但防水的膜和阳极侧的无水电解质来避免潮湿。因此,大多数研究都是在完全非水系统上进行的,其中有机电解质用于阳极和阴极侧。然而,有机电解质面临着自身的挑战。由于大多数气体扩散电极 (GDE) 针对水基电解质进行了优化,并使用聚四氟乙烯 (PTFE) 作为非润湿/疏水粘合剂,因此了解有机电解质如何与这些 GDE 相互作用是必要的。多孔系统内的非润湿区域对于提供存在气体、电解质和活性材料的多个三相接触点至关重要。液体用薄膜覆盖活性区域,确保离子传输到活性位点,而非润湿区域确保气体正确传输到活性区域。图 1 显示了 PTFE 附近的水基电解质膜的示意图,以及电流密度与电极表面液膜厚度之间的关系。在 PTFE 附近,仅形成一层薄液膜,阻碍了离子传输(橙色区域)。在电解质层较厚或孔隙被淹没的另一侧,氧气向活性侧的扩散受到长扩散路径的阻碍(黄色区域)。液体中氧气扩散缓慢会导致浓度过电位增加。在这两个区域之间,离子传输和氧气扩散长度之间的最佳平衡可产生最大电流密度(绿色区域)。如果使用具有优异润湿性能的电解质,则绿色区域中的三相区域会减少,多孔系统的电化学性能会降低。最终,完全淹没的电极(几乎所有活性位点都被液体覆盖)会导致性能不佳。[2] 此问题尤其会出现在表面张力低的有机液体中。[3] Wagner 等人研究了缓慢增加电解质渗透的影响。对于碱性燃料电池,他们观察到 PTFE 分解,因此多孔系统内部疏水区域会损失。这降低了三相边界的厚度,5000 小时后电化学性能损失 12-15%
通过开放式细胞设计,阴极与空气的必要连接与开发挑战有关。首先,Li金属是用水爆炸性反应性的,因此需要非水电。此外,还需要通过阳极侧的空气渗透性但无水电解质来避免湿度。因此,大多数研究都是在完全非水系统上进行的,其中有机电解质在阳极和阴极侧使用。但是,有机元素会面临自己的挑战。由于大多数气体扩散电极(GDE)是针对与聚氟乙烯(PTFE)的水基电解质优化的,因为无氧/疏水性粘合剂是必需有机电解质与这些GDE相互作用的理解。多孔系统内部的未润湿区域对于提供多个三相接触点至关重要,其中存在气体,电解质和活性材料。液体用薄膜覆盖活性区域,以确保离子传输到活跃部位,而未耶和华的区域则确保适当的气体传输到活跃区域。图1显示了PTFE附近的水基电解质膜的示意图,以及电流密度如何与电极表面上的液体膜厚度相关。在PTFE附近,仅形成薄薄的液体膜,阻碍了离子传输(橙色区域)。在另一侧,带有厚电解质层,甚至被淹没的孔氧气向活性侧的扩散受到长的扩散路径(黄色区域)的阻碍。液体中缓慢的氧扩散导致浓度增加电势。在这两个区域之间,离子传输和氧扩散长度之间的最佳平衡得出的最大电流密度(绿色区域)。如果使用具有优质润湿特性的电子,则绿色区域中的三相区域将减少,并且多孔系统表现出较低的电化学性能。实际上是完全洪水的电极,几乎所有活性位点都覆盖着液体的较低性能。[2]此问题尤其是针对低表面张力的有机液体。[3] Wagner等人研究了缓慢增加电解质渗透的影响。对于碱性燃料电池,他们观察到PTFE的分解,因此在多孔系统内部疏水区域丧失。这减少了三相边界的厚度,在5000 h
附录:结果,地下水在转移层保护区生物多样性(包括野生动植物)和人类依靠TFCA生态系统的关键作用,以足够的数量和质量来获得可靠的水流。依赖地下水的生态系统,例如Linyanti湿地,吸引游客进入Kaza TFCA并支持当地经济,而大多数农村家庭则依靠地下水来供应他们的日常水。竞争需求和质量恶化的地表水负担增加,这意味着地下水现在是确保水安全和对Kaza TFCA当地社区的气候弹性至关重要的资源。此外,地面与地表水系统之间存在牢固的联系,它们的相互依赖性应促进一种更加集成的治理方法(参见McCarthy等,2012)。地下水和人类与野生动植物之间的冲突相互作用在TFCA中是不可避免的。,即使人们和野生动植物的一般共存,也可能导致冲突,这成为需要管理的挑战。人类野生动物冲突(HWC)(Gross等,2021)。当水资源稀缺时,它会迫使人类和野生动植物争夺可用的水。在赞比亚和安哥拉,夸兰多河沿岸的当地社区在进入水中时,尤其是在8月至11月之间的浅水区时,浅水。还报道了野生动植物的作物破坏,包括河马和大象。由于气候变化,长时间的干旱时期和较差的土地用途规划,HWC上的水上已经加强了水。集成计划为改善土地用途的协调提供了机会。例如,聚类类似的活动,例如农业和人类定居点,可能会为水基础设施提供更有效的计划,从而减少野生动植物走廊内的冲突。在延长的干燥期间,地表水资源受到特别影响,促使人们将重点转移向地下水,以减轻人类野生动物冲突的挑战(HWC)。这涉及开发远离野生动植物走廊的地下水来源,以及建立野生动植物的“人造”水点(AWP)。开发AWP的实践涉及例如,将地下水泵送到模拟天然水存在模式,例如在特定地点的体积和时间。为野生动植物保护区开发用于野生动植物供水的AWP,因为它们倾向于引起野生动植物种群增加和对自然迁徙模式的干扰(Perkins,2020)。但是,当AWP的设计以模仿自然系统以确保野生动植物的适当运动的方式时,可以减轻这些负面后果。在用于国内供水目的开发地下水资源的地方,供水系统的运行应包括有效的HWC威慑。一个例子是赞比亚的Sioma Ngwezi国家公园沿线的Kapau社区,他们从地下水的发展中受益,以确保从野生动植物远离野生动植物(肯特,2020年)。在支持生物多样性和淡水生态系统中的地下水通道不受控制,地下水抽水过多可能会导致含水层的降解,因为抽象率超过了补给率(Foster&Chilton,2003年)。在这种情况下,很难维持地下水环境流,这使得能够在含水层中剩余的地下水和地下水之间达到平衡,以维持地下水依赖的生态系统(GDES)(GDES)(Ebrahim&Villholth,2016年)。在地表水资源中维持生态流量是逐步接受和理解的,但是,在Kaza TFCA国家中,实施的支持政策框架通常是不发达的,而对于地下水来说,实施的政策框架较少。此外,即使地下水对流量的贡献尚未得到充分量化,它仍然是维持生态系统功能和生物多样性的水的重要来源(De Graaf等,2019; Yarnell等,2022)。在确定地下水生态流程时可以进行进展之前,关键的第一步是增加有关Kaza TFCA地下水资源数量和质量的知识。目前,对含水层的程度和能力几乎没有知识(例如Transbaindary Nata Karoo含水层) - 他们持有多少水,可持续使用实际上意味着什么((Villholth等,2022)。拥有此类信息可实现适当的政策响应和适当的管理措施。
锂离子电池是当今电力平台的重要组成部分。锂离子电池在所有便携式电子设备、电动和混合动力汽车以及电网规模的储能系统中都有广泛的应用。[4] 但由于电池行业需要近 50% 的可用锂资源,因此锂离子电池能否大规模生产用于电网应用尚不确定。[5f] 此外,锂离子在非质子电解质中的电导率有限以及安全性较差也可能对其大规模利用造成问题。这些缺点促使研究人员寻找替代锂离子电池的新型储能技术,其中可充电金属空气电池成为一种有前途的新型电能存储技术(图 1)。通常,金属空气电池(Li 或 Na)比锂离子电池具有更高的理论比能,这使得金属空气电池系统对混合动力和混合动力电动汽车具有吸引力和实用性。 [6] 以金属为阳极、氧为阴极活性材料的电化学电力装置具有最高的能量密度,因为后者不存储在装置内部,而是可从环境中获取。锂空气电池(LAB)的理论比能量与汽油的理论比能量相当。[5c,7] 空气阴极性能限制了电池容量,危及 LAB 技术的商业成功。首先,无论是碱性还是酸性水性电解质,在阴极反应过程中都会消耗溶剂。其次,由于孔口/开口的堵塞导致放电不完全。[8] 因此,提高 LAB 性能的可能途径之一是阴极材料结构,[9] 它可以保持活性锂离子和氧气的传输,并且可以填充大量氧还原反应(ORR)的产物而不会堵塞孔隙。在燃料电池的气体扩散电极 (GDE) 领域中,双孔材料有望提高能量容量。[10] 第三,空气阴极性能下降。空气阴极提供大部分电池能量,因此电池电压降最大。[11] 放电过程中 LiO 2 的积累产生了混合产物,充电时的高电压导致溶剂分解,同时过氧化锂也发生还原。[12] 氧溶解度和扩散速率成为影响电池能量容量的关键因素。使用氧溶解度高和氧扩散率高的电解质可提高阴极容量。[8,13]