(Gu等人,2020)Modelfinder模型推荐的模型用于基于TTCDS基因串联的数据矩阵的系统发育分析。getorganelle管道用于组装清洁测序中的质体,读取用于验证组件的准确性和注释质体质体基因组注释者(PGA)的精确性,该质子使用了plastome
甾体糖苷生物碱 (SGA) 通常存在于茄属植物中,是番茄 (Solanum lycopersicum)、马铃薯 (Solanum tuberosum) 和茄子 (Solanum melongena) 等茄属粮食作物 (Harrison 1990; Helmut 1998; Petersen et al. 1993) 中的已知有毒物质(图 1)。由于 SGA 对真菌、细菌、昆虫和动物具有毒性,因此被认为在抵御多种病原体和捕食者方面发挥着防御作用(Friedman 2002、2006)。土豆是全球第四大重要作物,然而,土豆含有有毒的 SGA,例如 α-茄碱和 α-卡茄碱。 SGA 主要存在于芽菜和绿色马铃薯中(特别是靠近皮的部分),如果马铃薯管理不当(例如暴露在光线下),它们的积累就会增加。虽然少量的 SGA 只会导致难闻的味道,但摄入大量则会引起食物中毒。番茄的绿色组织(例如叶子和未成熟果实)中主要的 SGA 是 α-番茄碱和脱氢番茄碱(Friedman 2002)。然而,在番茄果实成熟过程中,未成熟果实中积累的 α-番茄碱会被代谢并转化为无毒无苦味的 SGA esculeoside A(Iijima 等人 2009)。茄子主要产生 α-茄碱和 α-茄精(Sánchez-Mata 等人 2010)。此外,多种 SGA,例如脱米辛(S. acaule)和瘦素 I 和 II(S.
摘要。研究了pyogenes孤立培养的益生菌制剂的抗菌活性的结果,已经发现益生菌制剂Inoprovet2由BAC.Subtilis,BAC制备。licheniformis具有最早和最高的活性(从6小时开始,链球菌培养的减少39±0.9,24小时后 - 78±2.6,96小时后 - 100% - 即与其他人相比,破坏了脓液微生物)。Inoprovet1 differed from Inoprovet2 only by the quality of the excipient, but its activity was slightly lower (6 hours - 22 ±1.1, 24 hours - 53 ±3.9 and 96 hours - 100%), the third most active was Vitasporin12B probiotic (6 hours - 21 ±1.8, 24 hours - 51 ±2.3 and 96 hours - 98 hours - 98 ±4.2%), followed by Vetom 1。2(6小时后16±2.9,24小时后51±0.5,96小时后96±1.8%)和益生菌孢子蛋白,在6小时16±2.9,24小时后45±3.3和96小时89±2.6%后杀死链球菌培养的抗菌活性。获得的结果,在临床实践中使用inoprovet2益生菌的可能性不仅用于治疗胃肠道感染,而且还用于伤口感染
摘要:(1)背景:抗生素耐药细菌的兴起对全球公共卫生构成了重大威胁,需要创新的解决方案。本研究探讨了在肠球菌不同物种之间抗生素抗性的背景下,群集定期间隔短的短滴体重复序列(CRISPR)的作用。(2)方法:使用CRISPRCASFINDER分析了研究中包含的肠球菌的基因组,以区分CRISPR阳性(4级CRISPR)和CRISPR阴性基因组。抗生素耐药性基因,比较分析探索了肠球菌中CRISPR存在与抗生素抗性谱之间的潜在关联。(3)结果:在肠球菌物种中发现的十个抗生素耐药基因中,只有一个EFMA基因与CRISPR-sem-semant株有着密切的关联,而其他菌株在CRISPR阳性和CRISPR阳性和CRISPR阴性肠球菌基因组之间并没有显着差异。(4)结论:这些发现表明,在CRISPR阴性肠球菌基因组中,EFMA基因可能更为普遍,并且它们可能有助于更好地理解肠道抗生素耐药性基因的分子机制。
结果:两种物种之间的土壤特性和根部特征存在显着差异,其中有土壤水含量(SWC)和根际和散装土壤中的土壤有机碳(SOC)(p <0.05)。虽然根部渗出液的代谢物分类相似,但它们的成分变化,而萜类化合物是主要的差分代谢物。土壤微生物结构和多样性也表现出显着差异,网络中具有不同的关键物种,并且主要与氮和碳周期有关的差异功能过程。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。 HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。
摘要 沙雷氏菌属是肠杆菌科的一种菌种,存在于多种生态环境中。近年来,沙雷氏菌已成为促进植物生长和防御植物病虫害的多方面贡献者。本综述探讨了沙雷氏菌诱导植物生长和缓解非生物和生物胁迫的机制。沙雷氏菌与植物生态系统的无缝整合使沙雷氏菌能够产生群体感应分子 N-酰基高丝氨酸内酯 (AHL),促进植物组织的定植并利用植物分泌物中的营养。这种错综复杂的通讯网络使沙雷氏菌能够产生植物激素并分解土壤中的必需营养物质供植物吸收。面对生态竞争对手,许多沙雷氏菌菌株表现出非凡的适应性,产生多种水解酶和抗菌、抗真菌或杀虫化合物,有效控制有害细菌、真菌和害虫。此外,有益的沙雷氏菌菌株还分别使用诱导系统抗性 (ISR) 和耐受性 (IST) 来缓解生物和非生物胁迫。沙雷氏菌的各种农业应用包括直接使用细菌细胞进行种子包衣、叶面喷洒和土壤接种,或将其生物活性化合物单独或与其他材料结合应用于植物的各个部位。这些努力旨在增强植物健康、抑制疾病和控制害虫种群。尽管应用前景广阔,但有报道称植物和动物具有机会性致病性。因此,应考虑几种安全方法和使用毒力因子突变菌株。沙雷氏菌在农业中的应用趋势预计将持续下去。
1。简介地衣是Mycobiont和Photobiont(藻类和/或蓝细菌)群落的高度整合系统。地衣真菌需要特定的光片以发展共生表型。类似于植物组织的地衣thallus为多种微生物提供了一个有趣的生物学环境(Zhang等,2016)。除了它们的主要共生体外,地衣还具有地衣真菌,内醇真菌以及可培养和不可培养的不可培养的非肉质细菌(Biosca等,2016; Muggia et al。,2014)。以来,地衣的历史可以追溯到超过6亿年(Yuan等,2005),如今,它们在地球上约有10%的陆地生态系统,地衣及其合作伙伴中占据了共生的成功风格(Papazi等,2015)。然而,地衣是微生物多样性的未置换栖息地。为了更好地理解微生物的生物学并将其独特的基因用于技术,研究较少研究的环境条件和栖息地是有利可图的(Suryanarayanan等,2017)。
摘要:从自然环境中分离新的细菌菌株可以检测出具有潜在实际意义的微生物。可以使用经典的微生物学和分子生物学方法来表征此类微生物。目前,对新发现的微生物的研究基于测序技术。全基因组测序可以提供有关菌株来源、分类地位和表型特征的信息。这项研究是使用从玉米作物根际分离的细菌无色杆菌属 77Bb1 进行的。使用 Illumina 2 × 150 nt 技术对细菌基因组进行测序。使用生物信息学方法分析获得的序列,得到 57 个重叠群和包含 6,651,432 nt 的基因组。基于 16S rRNA 基因序列的系统发育分析使所分析的细菌能够归属为无色杆菌属。获得的基因组包含 4855 种具有功能分配的蛋白质基因。其中一些基因与外来生物的生物降解和代谢有关。在分析的基因组中发现了所有用于氨基苯甲酸降解的基因以及几乎所有用于苯甲酸和苯乙烯降解的基因,这表明分离的菌株具有用于天然生物修复方法的潜力。
PIC 业绩创纪录,所有地区均实现利润增长 • 对 PIC 差异化基因的强劲需求推动了销量增长 5%,收入增长 7% 2 ,所有地区具有战略意义的特许权使用费收入增长 10% 2 • 包括合资企业在内的调整后营业利润增长 11% 2 ,因为业务不断扩大并加强了与世界各地生产商的商业关系 • 业绩受北美、拉丁美洲和亚洲强劲利润增长推动。欧洲增长良好,下半年业绩有所改善 • 中国业绩受到持续市场波动的影响,尤其是在下半年。全年销量下降 1%,收入保持稳定。特许权使用费收入增长 26% 2 ,调整后的营业利润为 940 万英镑(2022 年:560 万英镑,受 400 万英镑客户信用影响)
多药耐药细菌对公共卫生构成了重要的全球威胁,尤其是在严重的医院感染患者中。值得注意的是,由于它们与人类感染和抗生素耐药基因的转移,克雷伯氏菌和拉乌尔特省属引起了人们的关注。噬菌体疗法最近引起了人们的注意,作为治疗这些感染的一种新方法。但是,这种方法的效率依赖于具有广泛宿主范围的噬菌体。在这项研究中,使用肺炎克雷伯氏菌作为宿主,从河水样品中分离出具有较宽宿主范围的噬菌体K14-2。噬菌体的生物学特性的特征是评估其感染的多样性,杀死曲线,一步生长曲线以及跨不同pH水平和温度的稳定性。形态学分析表明,噬菌体非常类似于肌瘤病毒。宿主范围包括来自克雷伯氏菌,拉乌尔特氏菌和埃希里希氏菌的6种菌株。发现K14-2的基因组是双链DNA,包括175,759个碱基对,GC含量为41.8%。基因组注释揭示了280个蛋白质编码基因,其中96个分配了功能。与K14-2具有最高基因组相似性的噬菌体为vb_kpm-牛奶。基于主要衣壳蛋白建造的系统发育树发现噬菌体属于Straboviridae家族的Slopekvirus属。鉴于这些特征,新型噬菌体K14-2的发现具有广泛的宿主范围,具有增强噬菌体疗法在未来研究中的有效性的潜力。