来自SCTI003-A细胞系的代表性图像。(a)Stemcell的HIPSC可以与肠球形区分开,并使用STEMDIFF™肠类动物试剂盒(目录#05140)嵌入Matrigel®Domes中,以使其成熟到人肠癌中。可以使用STEMDIFF™肠杆菌生长培养基(目录#05145)来传递和扩展成熟的类器官(在第13天显示)。(b)使用STEMDIFF™背前桥式分化试剂盒(Catalog#08620)(CatalDiff#08620),可以与SCTI003-A区分开染色的DAPI(蓝色),MAP2(MAP2(MAGENTA),NEUN(黄色)和GFAP(CYAN)的神经器官,并与SCTI003-A区分开,并维持STEMDIFF™Neural Organid Organid Organid Organid Orancecodeandenceant(Catean)。(c)hipsc衍生的小胶质细胞具有可见过程和较小的细胞质与核比率,可以通过造血祖细胞中间人使用STEMDIFF™造血量™造血™造血™造血基因(使用Catalog#05310),从而从Stemcell的HIPSC通过造血祖细胞中间产生(catalog#05310),并使用Stemdiff™microgiriation(Catalog#05310),并使用Stemdiff™MicrogliAD(catalog#05310)(Catalog#05310)。 #100-0019/100-0020)。(d)使用STEMDIFF™心室心肌细胞分化试剂盒(目录#05010),可以从SCTI003-A产生心室心肌细胞的单层培养。
阿尔茨海默病 (AD) 中的神经元功能障碍和认知能力下降可能是由多种病理生理因素引起的。然而,人类的机制证据仍然很少,需要改进的非侵入性技术和综合模型。我们引入了个性化的 AD 计算模型,该模型建立在全脑 Wilson-Cowan 振荡器之上,并结合了来自 132 名 AD 患者的静息态功能 MRI、淀粉样蛋白-β (A β ) 和 tau-PET,以评估毒性蛋白质沉积对神经元活动的直接影响。这种针对特定主题的方法揭示了关键的病理机制相互作用,包括 A β 和 tau 对认知障碍的协同作用以及随着疾病进展而增加的神经元兴奋性。通过基于体素的形态测量,数据得出的神经元兴奋性值可以强烈预测临床相关的 AD 血浆生物标志物浓度 (p-tau217、p-tau231、p-tau181、GFAP) 和灰质萎缩。此外,重建的 EEG 代理量显示了标志性的 AD 电生理学改变(θ 波段活动增强和 alpha 波段减少),这种改变发生在 A β 阳性和边缘系统 tau 参与后。小胶质细胞激活对神经元活动的影响不太明确,这可能是由于神经成像在映射神经保护和有害激活表型方面的局限性。机械脑活动模型可以进一步阐明复杂的神经退行性过程并加速预防/治疗干预。
表 1. 一抗和二抗。抗体 宿主 用途 参考 公司 APC Ms 1:300 OP80 Calbiochem BLBP Rb 1:500 32423 Abcam DCX Rb 1:500 4604 细胞信号传导 GFAP Rb 1:1000 31745 Dako KI67 Rb 1:300 AB16667 Abcam MASH1/ ASCL-1 Rb 1:250 Ab74065 Abcam NEUN Ms 1:500 MAB377 Millipore NESTIN Ms 1:100 +citrato 4760 细胞信号传导 NG2 Rb 1:100 AB5320 Millipore OLIG 2 Rb 1:500 AB9610 Millipore PDGFR Α Rb 1:300 +MetOH 31745 细胞信号传导 S100 Β Rb 1:500 AB41548 Abcam SOX 2 Rb 1:200 2748 细胞信号传导 SOX 10 Rb 1:200 69661 细胞信号传导 TUJ 1 Ms 1:300 MAB1637 Millipore VIMENTIN Ms 1:200 V6389 Sigma-Aldrich Alexa Fluor 633 Gt α Rb Gt 1:1000 A-21070 Thermo Fisher Alexa Fluor 647 Gt α Ms Gt 1:1000 A-21236 Thermo Fisher Alexa Fluor 647 Gt α Rat Gt 1:1000 A-21247 Thermo Fisher Alexa Fluor 568 Gt α Rb Gt 1:1000 A-11011 Thermo Fisher Alexa Fluor 568 Gt α Ms Gt 1:1000 A-11004 Thermo Fisher Ms:小鼠,Rb:兔,Rt:大鼠,Gt:山羊。
结果:本研究纳入4例女性患者,年龄从8岁到44岁不等。1例患者的肿瘤位于右顶叶,另3例患者的肿瘤位于脊髓。组织学通常以星形母细胞的假菊形团和血管透明变性为特征。这些肿瘤表现出与传统颅内星形母细胞瘤相似的生长方式,4例患者的组织学表现均为高级别,表现为肿瘤细胞高密度区或坏死。免疫组化染色显示4例患者均表达OLIG2、EMA和波形蛋白,3例患者还表达GFAP和S-100。3例患者的Ki-67阳性指数约为15%,1例患者约为10%。使用分离探针的荧光原位杂交(FISH)显示3例患者存在EWRS1断裂,1例患者存在MN1断裂。进一步的DNA或RNA靶向双等位基因测序发现病例1存在EWSR1(外显子1-7)-BEND2(外显子2-14)融合,病例2存在EWSR1(外显子1-7)-BEND2(基因间)融合。病例3存在EWSR1(外显子1-7)-NUDT10(基因间)融合,病例4存在MN1(外显子1)-BEND2(外显子2)融合。EWSR1-NUDT10基因融合是星形母细胞瘤的一种新融合类型。患者的随访时间分别为76.5、17.6、33.7和61.3个月。3例在脊髓部位出现肿瘤复发,病例4出现多发性复发。
癫痫是与状态癫痫症(SE)产生的明显脑损伤相关的神经系统疾病,包括神经变性,神经胶质性和异位神经发生。减少这些过程是一种有用的策略,可以改善最初侮辱后的恢复和改善负面结果。sgk1.1,血清和糖皮质激素调节的激酶1(SGK1)的神经元同工型(SGK1)已被证明会增加神经元的M-电流密度,从而降低兴奋性和防止癫痫发作。在这项研究中,我们使用了4-5个月大的男性转基因C57BL/6 J和FVB/NJ小鼠,其内源性启动子控制的激酶的组成型活性形式的生理水平接近。在这里我们表明,SGK1.1激活有效地降低了神经元死亡的水平(使用氟-jade C染色评估)和在高潮区域和皮层中的反应性神经胶质激活(由GFAP和IBA-1标记报告),即使在高含水率的情况下,Kainate诱导的72 H,在72 H中进行了72 h。这种神经保护作用不仅是通过M-电流激活而直接与通过TUNEL分析评估的凋亡水平降低以及通过海马蛋白提取物的Western印迹对BIM和BCL-X L的量化水平有关。我们的结果表明,这种新描述的SGK1.1激活的抗凋亡作用与细胞兴奋性的调节协同作用,从而显着减少与癫痫生成有关的区域中SE诱导的脑损伤。
AEA N-arachidonoylethanolamine or anandamide AP-1 Activator protein 1 BBB Blood-brain barrier BDNF Brain-derived neurotrophic factor cAMP Cyclic adenosine monophosphate CB1 Cannabinoid receptor 1 CB2 Cannabinoid receptor 2 CBD Cannabidiol CBDA Cannabidiolic acid CBG Cannabigerol CBGV Cannabigivarin CNS Central nervous system COX-2 Cyclooxigenase-2 DAGL Diacylglycerol lipase DAMPs Danger associated molecular patterns eCB Endocannabinoid ECS Endocannabinoid system ERK Extracellular signal-regulated kinase FAAH Fatty acid amide hydrolase GFAP Glial fibrillary acidic protein GPCR G protein-coupled receptor HMGB1 High mobility group box 1 HPC Hippocampus Iba1 Ionized calcium binding adaptor molecule 1 IL Interleukin INF-γ Interferon gamma iNOS Inducible nitric oxide synthase IκBα Inhibitory kappa Bα LPS Lipopolysaccharide MAGL Monoacylglycerol lipase MCP-1 Monocyte chemoattractant protein 1 MCSF Macrophage刺激因子MD2粒细胞分化蛋白-2 MHCII主要组织相容性复杂II MIP-1α巨噬细胞炎症蛋白1αmiRNA MicroRNA MRNA MIRNA MRF-1小胶质细胞反应因子1 MyD88髓样分化因子88与2个相关因子2 NF-κB核因子-kappa b oeA乙醇酰胺
目的:研究谷氨酸单钠(MSG)对大鼠小脑皮质的神经毒性作用,并评估褪黑激素的潜在神经保护作用。Methods: Adult male albino rats (40) were randomly categorized into four groups of ten rats each comprising Group I (control), Group II (melatonin-treated, 6 mg/kg/day via intraperitoneal injection), Group III (MSG-treated, 4 mg/kg/day IP) and Group IV (co-treated with MSG and melatonin).注射14天后,处死大鼠并收集血液样本,以确定血糖,总胆固醇(TC)和甘油三酸酯(TG)水平。小脑组织进行组织学检查,并使用均质样品来估计丙二醛(MDA),谷胱甘肽(GSH),肿瘤坏死因子-α(TNF-α)和白介素1β(IL-1β)水平。结果:MSG的给药显着(P <0.05)增加了血清葡萄糖,TC,TG,MDA,TNF-α和IL-1β水平,同时显着降低了GSH水平(P <0.05)。组织学分析表明,MSG施加了退化作用,包括caspase-3和胶质纤维纤维酸性蛋白的强阳性反应,以及β-细胞淋巴瘤-2和突触possysin的弱反应。但是,褪黑激素给药改善了这些参数。结论:谷氨酸单钠会诱导大鼠小脑皮层的神经元损伤,但褪黑激素对这些退化性变化具有保护作用。需要其他研究来了解味精和褪黑激素作用的机制。关键字:谷氨酸单钠,褪黑激素,小脑,GFAP,神经保护症
摘要:已将大脑 - 肠轴轴确定为帕金森氏病生理病理学的重要因素。在这种病理学中,炎症被认为是由大脑中α-突触核蛋白的聚集造成的损害。有趣的是,Braak的理论提出,α-突触核蛋白的错误折叠可能起源于肠道,并以“ prion”方式通过迷走神经传播到中枢神经系统中。在肠神经系统中,肠神经胶质细胞是最丰富的细胞成分。几项研究评估了它们在帕金森氏病中的作用。使用从患者,细胞培养物或动物模型中获得的样品,具有特异性抗体标记肠神经胶质细胞的研究(GFAP,SOX-100和S100β)似乎表明激活和反应性神经胶质性与帕金森氏病在肠神经系统中产生的神经变性有关。在肠神经胶质细胞上表达的Toll样受体参与触发免疫/炎症反应的触发,维持肠道屏障完整性和肠道微生物群的构型;因此,这些受体可能会导致帕金森氏病。外部因素(例如压力)似乎也与其发病机理有关。一些作者研究了通过干预措施(例如色氨酸-2,3-二氧酶抑制剂,营养素或体育锻炼)逆转EGC变化的方法。一些研究人员指出,除了在疾病期间被激活外,肠神经胶质细胞还可能有助于突触核酸的发展。因此,仍然有必要进一步研究这些细胞及其在帕金森氏病中的作用。
姓名(名)姓名(姓)电台海报标题 Lauryn Adair 1 转运蛋白配体抑制斑马鱼 Dravet 综合征模型中的兴奋过度和代谢缺陷 Sarah Asby 2 癌症患者免疫检查点抑制剂介导的肾毒性新型检测方法的开发 Stephanie Bersie 3 吞噬细胞内坏死和凋亡颗粒细胞尸体的差异处理 Daniel Breiner 4 血红素改变铜绿假单胞菌烷基喹诺酮的产生 Robert Canfield 5 纳米颗粒递送核酸以诱导膀胱癌中的 1 型干扰素反应 Nai-Chia Chen 6 范围时间与 1 型糖尿病患者视网膜病变风险的关系 Sophia Clune 7 CHD1L 抑制剂 OTI-1100 的有效合成和衍生物作为新型癌症治疗药物 Bella Coenen 8 基于代谢组学鉴定以蓝莓为第一食物的婴儿血清和尿液中的蓝莓化合物 Mouna Dardouri 9 科罗拉多州在 2019 年至 2021 年 COVID-19 大流行期间处方药使用情况的变化:使用 ARIMA 模型进行中断时间序列分析 Baharak Davari 10 西罗莫司代谢物及其降解产物的免疫抑制活性 Anna Figueroa 11 神经元兴奋性过高的体外模型中的生物能量改变和氧化还原控制 Hanmant Gaikwad 12 用菁脂质对肿瘤进行体内涂抹:结构-活性关系 Paola Garcia Gonzalez 13 氧化应激导致 GFAP 和波形蛋白表达增加 Shilpa George 14 用于眼部药物的噬菌体样颗粒递送:等离子体波导共振光谱和使用体外和离体角膜模型的评估 Matthew Gibb 15 肺部炎症和病理在甲醛和氯化苦毒性模型中依赖于肥大细胞
摘要虽然众所周知,机械动力学在神经发生或神经变性等关键过程的神经分化中具有影响力,但对神经干细胞疗法的研究通常集中在生化相互作用上,而不是机械方面,而不是机械方面,通常会导致低效性和无法满足的潜力。因此,当前的研究试图使用常规的二维(2D)平面底物来阐明机械刺激对神经性能的影响。然而,这些2D底物无法捕获体内神经干细胞环境的定义三维(3D)特征。为了填补这一研究差距,我们使用长链聚乙烯糖二丙烯酸酯(PEGDA)和明胶 - 乙糖酰基酰基(Gelma)合成了一系列软弹性3D水凝胶,以模仿3D细胞培养的神经组织机械环境。通过改变聚合物的浓度,我们获得了低至10 kPa的拉伸模量和低至0.8 kPa的压力模量的生物塑料水凝胶。体外结果表明,Gelma-PEGDA水凝胶具有支持神经细胞生长,增殖和分化以及神经突生长所需的高生物相容性。然后,我们研究了机械拉伸对神经细胞行为的影响,并观察到机械拉伸可以显着增强神经突的延伸和轴突伸长。另外,神经突在拉伸方向上更方向定向。免疫细胞化学和相对基因表达数据还表明,机械张力可以上调神经分化蛋白和基因的表达,包括GFAP和βIII-微管蛋白。总体而言,这项研究表明,除了改善了对特定谱系神经分化的凝胶-PEGDA的特定机械性能外,水凝胶拉伸还成为改善神经干细胞疗法治疗结果的潜在诱人策略。