目的:Prader - Willi综合征(PWS)是一种神经发育障碍,由于位于15q11-Q13染色体上的印迹基因的缺乏症,导致下丘脑功能障碍。中,SNORD116基因对于PWS表型的表达至关重要。我们旨在阐明SNORD116在细胞和动物模型中在生长激素治疗(GHT)方面的作用,这是PWS的主要批准治疗。方法:我们从GH处理的PWS患者中收集了血清和诱导的多能干细胞(IPSC),以分化为多巴胺能神经元,并同时使用SNORD116敲除小鼠模型。我们分析了与GH反应性有关的因素的表达。结果:我们发现在幼稚的PWS患者中循环IGFBP7水平升高,在GHT下IGFBP7水平正常化。我们发现SNORD116基因敲除小鼠的大脑以及来自SNORD116删除的PWS患者的IPSC衍生的神经元中的IGFBP7水平升高。PWS患者中IGFBP7的高循环水平可能是由于IGFBP7表达增加和通过下调Proconvertase PC1而导致的IGFBP7表达和IGFBP7裂解的降低。 结论:SNORD116缺失会影响IGFBP7水平,而PWS患者的GHT下IGFBP7降低。 与IGF1相互作用的IGFBP7水平的调节对GHT下的PWS的病理生理学和管理具有影响。PWS患者中IGFBP7的高循环水平可能是由于IGFBP7表达增加和通过下调Proconvertase PC1而导致的IGFBP7表达和IGFBP7裂解的降低。结论:SNORD116缺失会影响IGFBP7水平,而PWS患者的GHT下IGFBP7降低。与IGF1相互作用的IGFBP7水平的调节对GHT下的PWS的病理生理学和管理具有影响。
摘要 奥拉帕尼是一种开创性的 PARP 抑制剂 (PARPi),被批准用于治疗存在 DNA 修复缺陷的去势抵抗性前列腺癌 (CRPC) 肿瘤,但已有临床耐药记录。为了研究获得性耐药性,我们通过对 LNCaP 和 C4-2B 细胞系进行长期奥拉帕尼治疗,开发了奥拉帕尼耐药 (OlapR) 细胞系。在这里,我们发现 IGFBP3 在奥拉帕尼耐药的获得性 (OlapR) 和内在性 (Rv1) 模型中高度表达。我们表明 IGFBP3 表达通过激活 EGFR 和 DNA-PKcs 增强 DNA 修复能力,从而促进奥拉帕尼耐药性。IGFBP3 耗竭通过促进 DNA 损伤积累,随后在耐药模型中促进细胞死亡,从而增强奥拉帕尼的疗效。从机制上看,我们表明,沉默 IGFBP3 或 EGFR 表达会降低细胞活力,并使 OlapR 细胞对 Olaparib 治疗重新敏感。通过吉非替尼抑制 EGFR 可抑制 OlapR 细胞的生长并提高 Olaparib 敏感性,从而模拟 IGFBP3 抑制。总之,我们的结果强调 IGFBP3 和 EGFR 是 Olaparib 耐药性的关键介质。
1。中国150001的哈尔滨医科大学第四家附属医院普通外科系。2。Bio-Bank of Perstomer Surgery系,Harbin Harbin,Harbin,150001,中国哈尔滨医科大学的第四家医院。3。中国150001的哈尔滨医科大学生物化学与分子生物学系。4。Harbin医科大学,Harbin 150001,Harbin医科大学编辑委员会。 5。 中国哈尔滨技术学院医学与健康学院,中国150001。 6。 Heilongjiang儿童发展与遗传研究的主要实验室,Harbin医科大学,Harbin,150001,中国。 7。 Harbin理工学院生命科学与技术学院,Harbin,150001,中国。 8。 哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。 9。 圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。Harbin医科大学,Harbin 150001,Harbin医科大学编辑委员会。5。中国哈尔滨技术学院医学与健康学院,中国150001。6。Heilongjiang儿童发展与遗传研究的主要实验室,Harbin医科大学,Harbin,150001,中国。 7。 Harbin理工学院生命科学与技术学院,Harbin,150001,中国。 8。 哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。 9。 圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。Heilongjiang儿童发展与遗传研究的主要实验室,Harbin医科大学,Harbin,150001,中国。7。Harbin理工学院生命科学与技术学院,Harbin,150001,中国。 8。 哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。 9。 圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。Harbin理工学院生命科学与技术学院,Harbin,150001,中国。8。哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。9。圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。
shank3相关的蛋白网络在磷酸化和去磷酸化的蛋白中显着富集。shank3基因在染色体22q13.3上的单倍不足通常会导致Phelan-McDermid综合征(PMS),这是一种遗传定义的自闭症形式,在运动行为,感觉处理,语言,语言和认知功能中存在严重缺陷。我们在shank3杂合小鼠中确定了多种疾病的表型,并表明JB2挽救了突触功能和可塑性,学习和记忆,超声声音和运动功能的缺陷;它还标准化了神经元兴奋性和癫痫敏感性。值得注意的是,JB2挽救了听觉诱发的响应潜伏期,α峰值频率和稳态脑电图响应的缺陷,该响应的测量值直接转化为人类受试者。这些数据表明JB2是神经可塑性的有效调节剂,具有治疗PMS和ASD的治疗潜力。
心脏纤维化与心血管疾病的不良预后有关,导致心脏依从性降低,最终导致心力衰竭。最近的研究已经确定了长未编码RNA(LNCRNA)在心脏纤维化中的作用。然而,许多LNCRNA在心脏纤维化中的功能仍有待表征。通过在压力过载诱导的心脏纤维化的小鼠模型上进行全转录组测序和生物信息学分析,我们筛选了一个称为血小板素1反义1(THBS1-AS1)的关键LNCRNA,这与心脏纤维化呈正相关。体外功能研究表明,THBS1-AS1的沉默改善了TGF-β1对心脏成纤维细胞(CF)激活的影响,THBS1-AS1的过表达表现出相反的作用。一项机械研究表明,THBS1-AS1可以旋转miR-221/222来调节TGFBR1的表达。此外,在TGF-β1刺激下,miR-221/222或敲低TGFBR1的强制表达显着逆转了通过进一步CF激活引起的THBS1- AS1过表达。体内,活化CFS中THBS1-AS1的特异性敲低显着缓解了小鼠的横向主动脉收缩诱导的(TAC诱导的)心脏纤维化。最后,我们证明了人类THBS1-AS1也可以通过调节TGFBR1来影响CF的激活。总而言之,这项研究表明,LNCRNA THBS1-AS1是一种潜在的新型心脏纤维化调节剂,可以作为治疗心脏纤维化的靶标。
引言心脏纤维化与心血管疾病的不良预后有关,是由急性或慢性刺激(例如心肌梗死和高血压)诱导的最重要的病理生理过程之一(1,2)。随着机械刺激,压力/体积超负荷,体液和其他病理因素,心脏成纤维细胞(CFS)增殖并转变为肌纤维细胞,导致细胞外基质(ECM)的分泌过多分泌,降低心脏合规性和心脏合规性和心脏稳定性和心脏重塑(最终)和最终的心脏失败(3)。当前,缺乏有效的CF激活和纤维化临床治疗方法。因此,发现心脏纤维化和阐明机制的关键分子对于心血管治疗具有很高的价值。新兴证据探索了长期的非编码RNA(LNCRNA)作为调节剂和各种心血管疾病的潜在治疗靶标(5-7)。lncRNA是一种非编码RNA类,长度超过200个核苷酸,可以通过蛋白质结合影响染色质结构和转录因子的功能(8)。lncRNA还通过其线性结构与microRNA(miRNA)或mRNA结合,影响mRNA翻译,剪接,降解和其他过程(9)。由于某些固有的困难,例如其保守主义,二级结构效应和细胞型特异性表达谱,只有少数具有与心脏纤维化相关的确定生物学功能的LNCRNA。但是,与心脏纤维化有关的关键LNCRNA仍有待确定。TGF-β信号通路通过调节细胞增殖分化和凋亡(10),在心脏纤维化中起着重要作用(10)。但是,TGF-β信号通路的广泛抑制剂,例如
ACEI = 血管紧张素转换酶抑制剂;AF = 心房颤动;AFL = 心房颤动;ARB = 血管紧张素受体阻滞剂;ARNI = 血管紧张素受体 - 脑啡肽酶抑制剂;BMI = 身体质量指数;COPD = 慢性阻塞性肺病;CRT-D = 心脏再同步治疗与除颤器;DPP = 二肽基肽酶;ECG = 心电图;eGFR = 估计肾小球滤过率;GLP = 胰高血糖素样肽;HbA1C = 糖化血红蛋白;HF = 心力衰竭;hsTnT = 高敏肌钙蛋白 T;ICD = 植入式心脏复律除颤器;IGFBP = 胰岛素样生长因子结合蛋白; KCCQ-TSS = 堪萨斯城心肌病问卷 - 总症状评分;NT-proBNP = N 末端前 B 型利钠肽;NYHA = 纽约心脏协会;SBP = 收缩压。
摘要 背景 卵巢癌 (OvCa) 患者 T 细胞浸润升高与生存率提高之间的相关性表明内源性肿瘤浸润淋巴细胞 (TIL) 具有一定程度的抗肿瘤活性,可用于 OvCa 免疫治疗。我们之前优化了一种体外 OvCa TIL 扩增用于过继细胞疗法的方案,该方案目前正在我们机构的临床试验中进行测试 (NCT03610490)。在此成功的基础上,我们开始对 OvCa TIL 进行基因改造,以克服肿瘤微环境中存在的关键免疫抑制因素。在这里,我们介绍了在患者来源的 OvCa TIL 中 CRISPR/Cas9 介导的 TGF-β 受体 2 (TGFBR2) 敲除的临床前优化。方法 从四名患者手术切除的肿瘤样本中生成 OvCa TIL,并进行 CRISPR/Cas9 介导的 TGFBR2 敲除,然后进行快速扩增方案。全面评估了 TGFBR2 定向 gRNA 的 TGFBR2 敲除效率和脱靶活性。此外,还测定了 TGFBR2 敲除对 TIL 扩增、功能和下游信号传导的影响。结果在四个独立的 OvCa TIL 样本中测试的 5 个 gRNA 实现了从 59±6% 到 100%±0% 的 TGFBR2 敲除效率。TGFBR2 敲除的 TIL 对免疫抑制 TGF-β 信号传导具有抗性,表现为缺乏 SMAD 磷酸化、缺乏对 TGF-β 刺激的整体转录变化、在有和没有 TGF-β 的情况下促炎细胞因子的分泌同样强烈、并且在存在 TGF-β 的情况下细胞毒性增强。CRISPR 修饰本身不会改变 OvCa TIL 的体外扩增效率、免疫表型或 TCR 克隆多样性。对于临床转化而言,重要的是,对 CRISPR 脱靶效应的全面分析表明,我们前两个靶向 TGFBR2 的 gRNA 没有脱靶活性的证据。结论 CRISPR/Cas9 介导的基因敲除在患者来源的 OvCa TIL 中是可行且有效的,可使用临床可扩展的方法。我们实现了高效且特异性的 TGFBR2 敲除,产生了一种扩增的 OvCa TIL 产品,该产品对免疫抑制剂具有抗性
72 ˚C,10 分钟 4 ˚C, PCR 混合物 10 x PCR 缓冲液 II (Life technologies) 2.0 l MgCl 2 (25 mM) 1.2 l dNTP 混合物 (每种核苷酸 25 mM) 0.16 l Cre FW (100 M) 0.1 l Cre REV (100 M) 0.1 l AmpliTaq Gold (5 U/ l) 0.13 l DNA 模板 ( 0.5 g 尾部 DNA) 1.0 l H 2 O 15.31 l 20 l PCR 后分析 1.5% 琼脂糖凝胶。预期模式为 Tg:250bp
