GFET-PV01是用于开发具有环氧封装层的传感应用的,从而可以在传感器修饰和测试过程中保持一致的液体处理和对齐。此外,将三个通道定位为启用每个石墨烯通道的可靠手动或自动化功能,以进行多重和/或内部参考。该设备与随时可用的数据采集系统兼容。
在设计生物芯片时,弓箭手需要确保在同一芯片上的石墨烯场效应晶体管(GFET)之间的钾测试结果不会显着变化。在过去的几个月中,弓箭手团队一直在努力减少同一芯片GFET之间的测试结果的变化。这是通过在功能化过程中执行的弓箭手内部过程的开发来实现的,以使GFETS成钾传感器。这项工作已导致片上设备可变性的显着降低到1.5%。通过将变异性降低到1.5%的弓箭手现在能够在生物芯片发育中移动下一个阶段并开始对人类血液的测试。
Archer 从其商业代工合作伙伴 Applied Nanolayers (“ANL”) 处获得了其 Biochip gFET 设计的微型化制造版本,整个四英寸晶圆在该公司的外包半导体组装和测试 (“OSAT”) 合作伙伴 AOI Electronics 处切割和组装。与早期的 10mm x 10mm 到 1.5mm x 1.5mm 设计(图 2)相比,该设计的尺寸已显著缩小,即缩小了 97%。整个四英寸晶圆生产了 1,375 个 gFET 芯片,而使用早期四英寸晶圆制造运行设计生产了 45 个 gFET 芯片。组装好的芯片目前正在 Archer 进行测试。更小的 gFET 降低了每个芯片的成本并提高了代工厂的准备程度。
摘要 — 我们提出了一种基于电荷准静态模型的显式小信号石墨烯场效应晶体管 (GFET) 参数提取程序。通过对 300 nm 器件进行高频(高达 18 GHz)晶圆上测量,精确验证了小信号参数对栅极电压和频率的依赖性。与其他只关注少数参数的工作不同,这些参数是同时研究的。首次将有效的程序应用于 GFET,以从 Y 参数中去除接触电阻和栅极电阻。使用这些方法可以得到提取小信号模型参数的简单方程,这对于射频电路设计非常有用。此外,我们首次展示了本征 GFET 非互易电容模型与栅极电压和频率的实验验证。还给出了测量的单位增益和最大振荡频率以及电流和功率增益与栅极电压依赖性的精确模型。
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
石墨烯场效应晶体管(GFET)由于其在生物分子信号扩增中的出色特性而被广泛用于生物传感,在临床诊断中具有高度敏感性和高温和护理测试的潜力。然而,复杂的制造步骤中的困难是GFET的进一步研究和应用的主要局限性。在这项研究中,引入了一种模块化制造技术,以在3个独立的步骤内构建微流体GFET生物传感器。纳入了低熔化的金属电极和复杂的流道,以维持石墨烯的结构完整性并促进后续的感应操作。实用的GFET生物传感器具有出色的长期稳定性,并且在各种离子环境中有效地表现。它还表现出高灵敏度和选择性,可在10 FM浓度下检测单链核酸。此外,当与CRISPR/CAS12A系统结合使用时,它促进了以1 FM浓度的核酸无扩增和快速检测。因此,据信这种模块化的微流体GFET可能会揭示在各种应用中基于FET的生物传感器的进一步发展。
Archer 已经建立了一个 gFET 性能数据集,用于代工厂批次间重复性,并研究了设备在测试条件和时间段内的稳定性。这些数据集是 Biochip gFET 用于慢性肾病血钾检测可行性开发计划的关键输入。该团队通过开发第一版电气调节程序实现了这一目标,该程序将各个 gFET 设置为高测试间重复性条件。该程序将扫描电压重复性提高了 10 倍,直接转化为更好的钾测量精度。这对于实现慢性肾病血钾水平所需的高精度测量至关重要。Biochip 团队的示例结果显示了传感器对相关范围的钾浓度的电气响应,如图 1 所示。该团队在建立重复性和灵敏度基线方面取得了进展。在接下来的几个月里,工作将针对影响这一点的因素,并通过传感器操作、制造和设计不断改进,以满足钾精度规范。例如,当要检测传感器的 20mV 响应时,测量变化需要远小于 20mV。图 1 中的初始数据显示了这些指标迄今为止的进展。