替代树脂系统的树脂系统,2023年6月,由Sphera Solutions,Inc。为Exxonmobil技术和工程公司编写。这项研究已根据独立的第三方关键审查小组确认根据ISO 14067:2018(温室气体 - 产品的碳足迹 - 要求和定量指南)进行确认。**在这项生命周期评估(LCA)研究中评估的所有树脂均涉及成型应用中使用的类型。具体来说,环氧树脂系统是VARTM风叶片生产中使用的类型。树脂系统代表配制的树脂系统,包括任何必需的固化硬化剂或催化剂。敏感性范围是聚氨酯,乙烯基酯和环氧系统的基于文献综述和Sphera Solutions,Inc。的数据。
摘要:玻璃纤维增强聚合物(GFRP)被广泛使用,并在现代社会中起着重要作用。GFRP的多层结构可以导致生产和服务过程中的分层缺陷,这可能会对设备的完整性和安全性产生重大影响。因此,在设备服务过程中监视这些分层缺陷很重要,以评估它们对设备性能和寿命的影响。微波成像测试具有高灵敏度和非接触性质,显示出有望作为检测GFRPS中分层缺陷的潜在方法。然而,目前,关于该场中缺陷图像的定量表征的定量表征有限。为了实现视觉定量非损害测试(NDT),我们提出了与GFRP中分层缺陷的2D成像可视化和定量表征方法,并实现了视觉检测和定量检测的组合。我们构建了一个微波测试实验系统,以验证所提出的方法的有效性。实验的结果表明该方法的有效性和创新能力可以有效地检测GFRP内部0.5 mm厚度的所有分层缺陷,其准确性很高,2D成像的信噪比(SBR)可以达到4.41 dB,位置的定量误差在0.5 mm内,并且区域内的相对误差在0.5 mm之内,相对误差为11%。
对更高的结构和工程奇迹的需求需要具有出色强度的材料。纤维增强聚合物(FRP)材料被广泛用作外部增强剂,以增强混凝土成员的结构性能。然而,对经受扭转的加强成员的研究直到最近才引起了很大的关注。在易于地震的地区,了解扭转故障对于确保结构安全至关重要。frp(纤维增强聚合物)复合材料广泛用于加强和修复混凝土结构,因为它们的高强度重量比,耐腐蚀性,易于施用和耐用性。它们通常用作外部粘合钢筋,以提高结构构件的弯曲,剪切和轴向能力。几乎所有工程结构,包括房屋,工厂,发电厂和桥梁,在整个过程中都会经历退化或恶化。环境因素,例如钢的腐蚀,随着年龄的增长,温度变化的逐渐损失,冻融周期,重复的高强度负荷,与化学物质和盐水接触以及暴露于紫外线辐射是这些恶化的主要原因。除了这些环境因素外,任何建筑退化的重要因素是地震。需要创建有效的结构改造技术来解决此问题。因此,关注土木工程基础设施的性能至关重要。有两种解决结构改造问题的解决方案:修复/改造或拆除/重建。如果升级是一种实用的替代方案,则旧设施的总替换可能不是一个经济有效的选择,而是可能成为日益增长的财务负担。由于降解,衰老,缺乏维护,强烈的地震以及当前设计标准的变化,桥梁,建筑物和其他土木工程结构的损害造成的损害。以前,通过使用新材料卸下和更换质量或损坏的混凝土或//和钢加固,从而完成了钢筋混凝土结构(例如柱,梁和其他结构元素)的改造。然而,随着新的高级复合材料(例如纤维增强聚合物(FRP)复合材料),现在可以使用外部粘结的FRP复合材料轻松有效地加强混凝土成员
摘要用于结构增强和改造,高级复合材料(例如碳纤维增强聚合物(CFRP)和玻璃纤维增强聚合物(GFRP))经常被使用。在土木工程中的应用需要彻底了解此类材料的行为和响应。为了预测应力 - 应变行为,当前的研究重点是CFRP和GFRP增强混凝土标本的数值模拟。abaqus用于使用C3D8R固体元素对混凝土样品进行建模。材料建模考虑了混凝土的非线性压缩行为和CFRP/GFRP的线性弹性压缩行为。这项研究与正常强度的混凝土相比,研究了载荷能力的增长,并局限于无限制的强度。通过与公开的实验结果进行比较,已经确认了数值模拟的有效性。此外,仔细检查了层数的影响。此外,还进行了用GFRP和CFRP增强的标本的应力 - 应变特性的比较。
摘要:本文对风力涡轮刀片设计,分析和材料实验进行了彻底的检查,重点是利用铝粉增强的玻璃纤维增强聚合物(GFRP)。通过数值模拟和实验测试的组合,与钢和非强化GFRP等传统材料相比,评估了用铝粉增强GFRP的机械性能和性能。这些发现突出了GFRP的出色适合性,该GFRP用铝粉增强了风叶片应用,展示了其机械强度,轻质特性,耐腐蚀性和空气动力学特性。关键字:风力涡轮叶片,玻璃纤维增强聚合物(GFRP),铝粉增强,结构分析和实验验证。
各种行业都在考虑合成材料中的金属产品。结构工程师喜欢玻璃纤维增强塑料/聚合物(GFRP/GRP),因为其弹性高模量,强度与体重的比率和耐腐蚀性特征。已经发现,结构工程缺陷是灾难性后果的主要原因。本文概述了可用的NDT方法,可用于评估GFRP/GRP复合材料的质量。还讨论了研究人员和从业人员使用的最常见的NDT方法,以及这些材料的优势,缺点,特征和潜在应用。审查将使用超声测试作为一种潜在的方法来领导研究,该方法采用多元素体系结构的低频传感器。这项研究将领导行业参与者,GFRP/GRP制造商,研究人员和NDT从业人员制定马来西亚GFRP/GRP超声测试的技术标准。
使用GFRP棒(玻璃纤维增强聚合物)发现建筑的未来,这是一项旨在超越传统材料的开创性创新。GFRP棒具有出色的强度和耐用性,同时保持轻巧和耐腐蚀,使其非常适合各种苛刻的环境。他们的先进性能不仅可以增强结构性性能,而且还有助于持久和更可持续的建筑解决方案。通过将GFRP栏整合到您的项目中,您就可以采用一种尖端的替代方案,该替代方案有望彻底改变建筑实践,从而通过减少维护和寿命增加提供卓越的成果。体验GFRP棒的好处,并将您的施工标准提升到新的高度。
不同的研究人员已经实施了不同类型的复合材料,如碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)、片状模塑料(SMC)和玻璃纤维垫热塑性塑料(GMT)用于保险杠梁,以提高保险杠子系统的性能,因为它可以提供轻量化以及降低能耗,[3-5]。目前,SMC 和 GMT 因其易于成型、材料和制造成本低而被广泛使用,即使 CFRP 和 GFRP 不同的研究人员已经实施了不同类型的复合材料,如碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)、片状模塑料(SMC)和玻璃纤维垫热塑性塑料(GMT)用于保险杠梁,以提高保险杠子系统的性能,因为它可以提供轻量化以及降低能耗,[3-5]。目前,SMC 和 GMT 因其易于成型、材料和制造成本低而被广泛使用,即使 CFRP 和 GFRP
此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]
所有标本都得到加强,具有相同的混凝土级和钢筋。与各种强化配置的故障扭转力矩以及性能改进和裂纹模式一样。这项研究的目的是评估使用环氧键合的GFRP织物作为外部横向加固,以将经受扭转的钢筋混凝土束。将增强梁的效率结果与对照束的实验结果进行了比较,而无需使用FRP。这项研究表明,所有GFRP增强光束的扭转行为都有显着改善。使用FRP被证明是可行的。各种包装构型的有效性表明,完全包裹的光束的性能要比使用条更好。简介: