光电设备是基于光电转换效应制造的,该效应是现代光电技术和微电子技术技术的开发研究领域[1]。在21世纪,全球光电设备制造业已取得了快速发展,而光电设备的市场逐年增长。光电设备被广泛用于各种场,例如光学显示,有机太阳能电池,激光和波导。它们是信息技术的重要组成部分[2,3]。为了扩大应用程序方案并提高光电设备的性能,许多学者已经在相关领域进行了研究。本期包括12篇论文,这些论文涉及光电设备算法,材料和结构中的各种挑战和机遇。例如,在光学显示的字段中,可以通过优化算法来改善电子纸的响应时间和亮度[4]。在太阳能电池和波导的场中,可以通过设计新的光电材料和设备结构来改善太阳能电池和波导传输距离的转换率[5,6]。本期特刊的最新研究进展如下。电子纸是通过反射显示图像显示的新设备,这是光电设备的重要分支[7]。最广泛使用的电子纸是电泳显示(EPD)。修饰的蓝色颗粒具有较高的Zeta电位和电泳迁移率。他等人。目前,将离子液体用作电泳颗粒修饰的电荷控制剂,并将高电离1-丁基1-丁基-1-甲基磷脂单离子液体液体移植到杯赛上。然后,成功制备了蓝色的电泳颗粒[8]。制备过程很简单,并且生产成本很低,这有助于实现丰富的EPD颜色显示。此外,算法的优化也可以用于提高EPDS的性能。根据直流电流(DC)平衡的原理设计了驱动波形[9]。研究了统一参考灰度相的亮度曲线,并获得了其驱动时间;同时,根据原始灰度对擦除阶段的持续时间进行了重新设计。结果表明响应时间可以有效缩短。此外,可以通过将红色颗粒添加到EPD [10]来制备三色EPD。为了解决红色幽灵图像的问题,Wang等人。分析了灰度转化中红色颗粒的空间位置分布[11]。研究了红色幽灵图像产生的关键因素,并根据擦除和激活阶段的优化提出了驱动波形。在微胶囊顶部的残留红色颗粒在红色擦除阶段消除,并使用高频电压激活颗粒。红色幽灵图像有效地被抑制了。同样,一些学者发现黑色和红色颗粒可以通过阻尼振荡电压序列分离。红色颗粒被纯化,像素的红色饱和度增加[12]。但是,EPD具有低刷新
摘要。直接对地球系外行星的直接成像是下一代地面望远镜最突出的科学驱动因素之一。通常,类似地球的系外行星位于与宿主恒星的小角度分离,这使得它们的检测变得困难。因此,必须仔细设计自适应光学(AO)系统的控制算法,以将外部行星与宿主恒星产生的残留光区分开。基于数据驱动的控制方法,例如增强学习(RL),可以改善AO控制的有希望的研究途径。rl是机器学习研究领域的一个活跃分支,其中通过与环境的互动来学习对系统的控制。因此,RL可以看作是AO控制的一种自动方法,在该方法中,其使用完全是交钥匙操作。特别是,已显示基于模型的RL可以应对时间和错误注册错误。同样,它已被证明可以适应非线性波前传感,同时有效地训练和执行。在这项工作中,我们在ESO总部的基于GPU的高阶自适应光学测试台(Ghost)测试台上实施并调整了称为AO(PO4AO)的策略优化的RL方法,在实验室环境中我们证明了该方法的强劲性能。我们的实施允许平行执行训练,这对于天上的操作至关重要。,我们研究了该方法的预测性和自我校准方面。我们为实施开放量有据可查的代码,并指定RTC管道的要求。除了硬件,管道和Python接口潜伏期外,还仅引入了幽灵运行Pytorch的新实现。我们还讨论了该方法的重要超参数以及它们如何影响该方法。此外,本文讨论了潜伏期的潜伏期的来源以及较低潜伏期实现的可能路径。
Elise Quevedo是作家,演讲者,分析师和讲故事的人。在Linked In In the Linked中排名最高的2%的资料中,最近在技术影响者中被任命为前50位女性,她经常为数字出版物写作,并与《财富》 500强公司合作,成为全球思想领袖。也被称为“数字幽灵皇后”,因为她的幕后作品,包括代笔,她在活动中启发了观众作为全球主题演讲者的启发。她是“创造踢屁股态度”的作者,在那里她分享了自己对具有积极态度的热情,无论发生什么事情,她都会一直前进。作为全球思想领袖,她喜欢与品牌合作,
与Finley I. Lawson,“科学与宗教论坛讨论信息与现实:宗教与科学问题”;尼尔斯·亨里克·格雷格森(Niels Henrik Gregersen),“'与粘土的神':深层化身和信息世界的想法,”迈克尔·伯德特(Michael Burdett)和隆国王隆国王(King-ho Leung),“幽灵中的机器:超人类主义和信息本体论”; Marius Dorobantu和Fraser Watts,“精神智能:处理不同的信息或处理信息不同?”; Matthew Kuan Johnson和Rachel Siow Robertson,“大数据的共解放框架”;彼得·菲利普斯(Peter M. Phillips),“信息形而上学的数字神学和潜在的神学方法”;和安德鲁·杰克逊(Andrew Jackson),“孔雀奖论文 - 东正教介绍进化论:马克西姆斯(Maximus)对系统发育徽标的愿景。”
假期时间表12月24日,星期二 - 圣诞节午夜弥撒之前,将在晚上11:15开始颂歌,颂歌和合唱团。与IHM演说庆祝新年:12月31日,星期二 - 在圣诞节的八度,低质量,上午8:00&上午9:30,上午11:15在上午11:15 Sung High Mass,随后是BeneDiction和Te Deum,在通常的情况下,全超放纵的人都在其上。1月1日,星期三 - 耶稣降生的八度,纳蒂创作者将在马萨诸塞州高呼。低质量,上午8:00和上午9:30,上午11:15唱歌veni creapor,一种赞美诗,援引圣灵,在弥撒之前高呼。在通常的条件下可以获得全体放纵。
随着长期月球探索和居住的追求越来越接近现实,人们正在广泛努力有效减轻月球表面尘埃的污染和渗透。这种尘埃对人类有害,往往会顽固地粘附在所有暴露的表面上,导致性能问题并最终导致失败。虽然已经开发了几种主动和被动技术来应对这一挑战,但评估这些技术在实际月球环境中的性能极其重要。风化层粘附特性 (RAC) 实验有效载荷为这种评估提供了重要机会。RAC 有效载荷由 Alpha Space 为美国国家航空航天局 (NASA) 设计,计划于 2023 年搭乘 Firefly Aerospace Blue Ghost 着陆器飞往月球。由于可用于此次任务的材料数量有限,因此做出明智的选择至关重要。NASA 兰利研究中心选择了两种聚合物、一种碳纤维增强复合材料和一种金属合金作为多样化的结构材料。每种材料都使用激光烧蚀图案进行地形修改。本文简要介绍了此次月球表面实验所选用的被动式除尘材料和表面的选择和测试程序以及获得的一些结果。
使用 COFDM,每个载波频率的符号率要低得多,大约每秒 850 个符号。这意味着符号的物理间距约为 350kM,而不是 50 米。反射信号要干扰当前信号,就需要一个额外路径长度为 350 公里的幽灵,在悉尼,这意味着它需要从纽卡斯尔附近某个建筑物上反弹!每个 COFDM 载波实际上都是一个单独的无线电发射器,在较低的音频范围内调制。多径接收(重影)会使模拟电视几乎无法观看,但对 DVB-T 没有任何影响。这种情况非常类似于在汽车收音机上接收 AM;即使在高速行驶时,AM 也很少发生信号丢失。
2020 年 7 月,NASA 选择月球 GNSS 接收机实验 (LuGRE) 作为 CLPS 任务订单 19D 的第 10 个有效载荷 [17]。2021 年 2 月,NASA 将任务订单 19D 授予 Firefly Aerospace。Firefly 的蓝色幽灵任务 1 (BGM1) 将把 LuGRE 和其他 CLPS 19D 有效载荷运送到月球危海的 18.6° N、61.8° E。LuGRE 旨在首次在 30 RE 以上的高度演示基于 GNSS 的导航,也是首次在月球表面使用 GNSS。LuGRE 科学目标的实现将扩大可用 GNSS 信号的已证实覆盖范围。后续任务将能够利用 LuGRE 数据和经验教训在月球区域内实现 GNSS 的运行,为探索月球的航天器增加一个现有的、经过验证的实时导航源。 2 卢格雷科学目标
在调查过程中,委员会采访并从包括州,县和市政执法人员在内的二十多名证人作证,有些具有弹道专业知识,以及参与购买和私人制造幽灵枪和枪支转换设备的个人。SCI调查人员发布了大约二十枚传票,以其他方式获得并审查了数千页的商业记录,法院文件和其他材料,并调查了在线黑市活动。委员会还宣誓就职人士的证词。最后,SCI调查人员还获得并分析了联邦和全州射击事件以及其他相关数据,以识别更大的趋势。