我们提出了用于制备 Greenberger-Horne-Zeilinger (GHZ) 状态的优化提炼方案。我们的方法依赖于以受白噪声影响的 GHZ 状态作为输入来训练变分量子电路。通过对该方案进行一次迭代优化,我们发现可以提高 GHZ 状态的保真度,尽管进一步迭代会降低保真度。同样的方案,作用于相干失真的纯态输入,仅在某些特殊情况下有效。然而,我们表明,当在协议的两次迭代后优化输出时,可以实现截然不同的结果。在这种情况下,获得的方案在从受白噪声影响的输入中提炼 GHZ 状态方面更有效。此外,它们还可以纠正几种类型的相干纯态误差。
摘要。在此手稿中,已经提出了用于无线应用的紧凑型MIMO天线。提出的天线由F形散热器组成,中心的圆形插槽和底物另一侧的矩形接地平面。所提出的天线的总尺寸为48×48 mm2。天线设计为在两个频带上工作 - 1.5至2.3 GHz和3.7至4.2 GHz,分别为1.8 GHz和3.9 GHz。还可以通过使用各种参数(例如信封相关系数(ECC),多样性增益(DG),总主动反射系数(TARC)等来观察天线的多样性性能。ECC的值为0.02,显示了天线的良好多样性性能。为了验证模拟和测量结果,已制造了所提出的天线,并彼此吻合。
半量子隐私比较(SQPC)的目标是利用少量的量子能力对隐私信息进行平等性比较。近年来,半量子隐私比较协议的研究取得了一些成果,但大多数SQPC协议仅能比较双方的隐私信息,多方SQPC协议的研究还很少。当参与者数量超过两个时,协议需要执行多次。因此,提出了一种基于最大纠缠GHZ型态的多方半量子隐私比较协议,只需执行一次协议即可比较n方的平等性。而且参与者的加密信息不通过经典信道传输,提高了协议的安全性。最后,安全性分析表明,外部攻击、不诚实参与者攻击和半诚实TP攻击对该协议均无效。
我们研究了一个 Rabi 型哈密顿系统,其中量子比特和 ad 级量子系统 (qudit) 通过一个公共谐振器耦合。在弱耦合和强耦合极限下,通过适当的微扰方案分析光谱。分析表明,qudit 的多级存在有效地增强了量子比特 - qudit 相互作用。发现强耦合系统的基态属于 Greenberger-Horne-Zeilinger (GHZ) 类型。因此,尽管量子比特 - qudit 强耦合,但 GHZ 状态的特定三部分纠缠的性质抑制了二部分纠缠。我们分析了量子比特 - 谐振器和量子比特 - 谐振器耦合的猝灭和绝热切换下的系统动力学。在淬灭情况下,我们发现谐振器中非绝热光子的产生会随着量子比特中的能级数而增强。绝热控制代表了制备 GHZ 态的一种可能途径。我们的分析为未来研究量子比特-量子比特系统中的相干态转移提供了相关信息。
摘要 高质量 Greenberger–Horne–Zeilinger (GHZ) 状态的分布是许多量子通信任务的核心,从扩展望远镜的基线到秘密共享。它们还在分布式量子计算的纠错架构中发挥着重要作用,其中可以利用贝尔对来创建量子计算机的纠缠网络。我们研究了在量子网络上从非完美贝尔对中创建和提炼 GHZ 状态的过程。具体来说,我们引入了一种启发式动态规划算法来优化大量创建和净化 GHZ 状态的协议。所有考虑的协议都使用基于目标状态(即 GHZ 状态)非局部稳定算子测量的通用框架,其中每个非局部测量都会消耗另一个(非完美)纠缠态作为资源。在没有退相干和局域门噪声的情况下,新协议的表现优于以前的提案。此外,这些算法可以用于寻找涉及任意数量参与方和任意数量纠缠对的协议。
宽带(多倍频程)LNA 采用各种架构设计,包括分布式(行波)、平衡和电阻反馈配置 [9]。电阻反馈被广泛用于实现多种 LNA 性能(工作频率范围、噪声系数、增益、增益平坦度、线性度、VSWR、功耗)之间的权衡 [9, 10]。在基于电阻反馈的可能配置中,共源共栅 LNA 不仅可以在其工作频带上提供平坦的增益和功率,还可以在同一频带内提供平坦的线性度和更高的输出阻抗(更好的宽带潜力)[11]。因此,本文介绍了基于电阻反馈配置和自偏置技术的单正电源共源共栅 LNA。