通过AlGaN/GaN/InGaN结构实现8 W mm 1,通过N极性GaN HEMT实现94 GHz时8 W mm 1 [3]。这些结果对于商业(5G及以上、汽车雷达)和国防(SATCOM、雷达)应用越来越重要,所有这些应用都在向毫米波频率范围(30 – 300 GHz)推进。为了进一步提高GaN HEMT的优势,我们的研究小组在氮化铝(AlN)缓冲层上引入了HEMT。[4 – 6]通过用AlN替换AlGaN顶部势垒并用AlN替换典型的GaN缓冲层,AlN/GaN/AlN异质结构具有更高的热导率、改善了薄GaN通道(<30nm)的载流子限制,并且与其他传统顶部势垒材料(如AlGaN或InAlN)相比,顶部势垒具有出色的垂直可扩展性。其他研究小组也展示了基于AlN 的器件的有希望的结果,包括基于AlN 衬底的HEMT,在X 波段实现15 W mm 1 [7] ,AlN 缓冲区击穿功率为 5 MV cm 1 [8] 。已经展示了使用AlN 顶部势垒的HEMT,包括GaN HEMT 记录f T = f max 为454/444 GHz,[9 – 11] PAE 为27% ,相关输出功率为1.3 W的W 波段功率放大器,[12] 噪声系数小于2的K a 波段低噪声放大器,[13] 以及40 GHz 时为4.5 W mm 1 [14] 。所有这些器件都基于AlN/GaN/AlGaN 异质结构。 AlN/GaN HEMT 已显示出 Ga 极性 HEMT 在 W 波段的创纪录输出功率,在 94 GHz 时 P out ¼ 4 W mm 1。[15] 除了射频 (RF) HEMT 之外,氮化铝还具有单片集成大电流 GaN/AlN p 型场效应晶体管 (pFET) [16 – 18] 和晶体 AlN 体声波滤波器 [19] 的潜力,这两者都是通过 AlN 缓冲层实现的。SiC 衬底以衬底集成波导 (SIW) 和天线的形式实现了进一步的集成。[20] 这种集成生态系统被称为 AlN 平台,使高功率氮化物互补金属氧化物半导体 (CMOS)、RF 滤波器、单片微波集成电路 (MMIC) 以及 RF 波导和天线共存于一个单片芯片上。[21]
多通道电生理传感器和刺激器,尤其是用于研究神经系统的刺激器,最常见的是基于单片微电极阵列。这种体系结构限制了单个电极放置的空间灵活性,从而构成了缩放到大量节点的约束,尤其是在非连续位置的范围内。我们描述了亚毫米尺寸电子微芯片的设计和制造,这些电子微芯片(“神经元”)自主执行神经感测或微刺激,重点是它们的无线网络和动力。一个〜1 GHz电磁的经皮连接到外部电信枢纽可以在单个神经趋势上进行双向通信和控制。该链接在定制的时分部多访问(TDMA)协议上运行,旨在扩展多达1000个神经元。该系统在小动物(大鼠)模型中被证明为具有解剖学限制的小动物(大鼠)模型的皮质植入物,将植入物限制为48个神经元。我们建议可以将神经重的方法推广,以克服无线传感器和执行器作为可植入的微型系统的许多可伸缩性问题。
摘要 — 在 SiC 晶片上设计、制造和测量了不同几何形状的基片集成波导 (SIW),以及基于 SIW 的谐振器、基于 SIW 的滤波器、接地共面波导 (GCPW)、GCPW-SIW 过渡和校准结构。使用两层校准从 GCPW 探测的散射参数中提取固有 SIW 特性。由此产生的 D 波段 (110-170 GHz) SIW 表现出创纪录的低插入损耗 0.22 ± 0.04 dB/mm,比 GCPW 好四倍。3 极滤波器在 135 GHz 时表现出 1.0 dB 的插入损耗和 25 dB 的回波损耗,这代表了 SiC SIW 滤波器的最新水平,并且比 Si 片上滤波器好几个数量级。这些结果显示了 SIW 有望在同一 SiC 芯片上集成 HEMT、滤波器、天线和其他电路元件。关键词 — 腔体谐振器、微波滤波器、毫米波集成电路、半导体波导
摘要:自旋效应的纳米振荡器在当前可用的CMO设备之外有望,并且有可能用于模仿计算神经元系统中神经元的功能。当它们在4-20 GHz范围内振荡时,它们有可能用于构建高速加速的神经硬件平台。然而,由于它们的产出极低的信号水平和高阻抗以及其微波范围的工作频率,因此,当使用CMOS技术实施其状态读出电路时,SHNO是否振荡是否会带来巨大的挑战。本文介绍了第一个CMOS前端读出电路,该电路在180 nm上实施,以shno振荡频率高达4.7 GHz,设法辨别了100 µV的SHNO SHNO幅度,即使对于障碍物的障碍也达到300ω,并且噪声效果高达300ω,并且噪声效果为5.3 db db 300ω。提出了该前端的设计流以及其每个块的架构。对低噪声放大器的研究在设计中的固有困难中加深了深化,满足了SHNOS的特征。
摘要。我们开发了两组工作在 D 波段的集总元件动能电感探测器阵列,并针对旨在精确测量宇宙微波背景 (CMB) 的卫星任务的低辐射背景条件进行了优化。第一个探测器阵列对通过单模波导和波纹馈源喇叭耦合的入射辐射的总功率敏感,而第二个探测器阵列由于正交模式换能器而对辐射的极化敏感。在这里,我们重点介绍总功率探测器阵列,它适用于例如精确测量 CMB 的非极化光谱畸变,其中检测两种极化可提供灵敏度优势。我们描述了阵列设计、制造和封装的优化、暗和光学特性以及用于光学测试的黑体校准器的性能。我们表明,在 3.6 K 黑体的辐射背景下,阵列中的几乎所有探测器的光子噪声都是有限的。这一结果,加上 OLIMPO 飞行所展示的对宇宙射线撞击的弱灵敏度,验证了在精确的空间 CMB 任务中使用集中元件动能电感探测器的想法。
本文介绍了用于无线传感器网络 (WSN) 应用的超低功耗低噪声放大器 (LNA) 的设计拓扑。所提出的超低功耗 2.4 GHz CMOS LNA 设计采用 0.13 µm Silterra 技术实现。LNA 的低功耗得益于第一级和第二级的正向体偏置技术。为了提高增益,同时降低整个电路的功耗,实施了两级。仿真结果表明,在 0.55 V 的低电源电压下,总功耗仅为 0.45 mW。与之前的工作相比,功耗降低了约 36%。实现了 15.1 dB 的增益、5.9 dB 的噪声系数 (NF) 和 -2 dBm 的输入三阶截点 (IIP3)。输入回波损耗 (S11) 和输出回波损耗 (S22) 分别为 -17.6 dB 和 -12.3 dB。同时,计算出的品质因数(FOM)为7.19 mW -1 。
(17)
摘要 — 本文介绍了一种体积小、功耗低的毫米波相控阵接收机前端。本振 (LO) 和射频 (RF) 相移方案相结合,用于降低功耗和 RF 路径损耗。此外,在有源电路的实现中,采用了体隔离技术,以最少的级数实现更高的功率增益。该技术还用于 RF 路径移相器开关以减轻损耗。为了验证所提出的架构,采用 65 nm 体 CMOS 工艺制造了一个单元件 56 至 66 GHz 相控阵接收机前端。根据测量结果,接收机实现了 ∼ 14.85 dB 的功率增益和 5.7 dB 的最小噪声系数 (NF)。测得的平均 RMS 相位和增益误差分别为 ∼ 3.5 ◦ 和 ∼ 0.45 dB。接收器链的输入 1dB 压缩点 (P − 1dB ) 约为 − 19 dBm。完整的接收器(包括有源平衡-不平衡转换器和所需缓冲器(不包括 LO))在 1 V 电源下消耗约 50 mW 功率,不包括焊盘,占用硅片面积为 0.93 mm 2 。
人们对有线和无线通信速度、汽车雷达分辨率和网络基础设施带宽的需求正在推动无线通信向更高数据速率和更高频率发展。随着这些工作频率和数据速率增加到每秒数百千兆位和数十至数百千兆赫,生成、处理、传输和接收这些信号的设备尺寸正在缩小,甚至完整的无线系统都建立在单个 IC 上。此外,随着系统级封装 (SiP)、片上系统 (SoC) 和三维集成电路 (3D IC) 技术的发展,这些 IC 的复杂性也在增加,以适应更高的数据速率、传输速度、内存和处理能力,以满足这些最新应用的性能要求 [1,2,3]。
空间记忆负责记录和处理有关环境的信息,而记忆则对获得的信息进行编码、存储和检索(3)。空间记忆是记忆的一部分,负责记录和处理有关生物体环境的感觉数据,主要使用视觉和本体感受。哺乳动物通常需要具有特定功能的海马体 CA1 区来创建空间属性和数据。空间记忆需要 N-甲基-D-天冬氨酸 (NMDA) 和 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯 (AMPA) 受体。NMDA 受体用于强化信息,而 AMPA 受体用于回忆信息。NMDA 受体在中枢神经系统 (CNS) 的突触功能中起着至关重要的作用 (4,5)。电磁场已被证明会导致去甲肾上腺素和多巴胺减少