摘要:本文介绍了一种 40 GHz 压控振荡器 (VCO) 和分频器链,采用意法半导体 28 nm 超薄体盒 (UTBB) 全耗尽绝缘体上硅 (FD-SOI) 互补金属氧化物半导体 (CMOS) 工艺制造,具有八层金属后道工艺 (BEOL) 选项。VCO 架构基于带有 p 型金属氧化物半导体 (PMOS) 交叉耦合晶体管的 LC 谐振腔。VCO 通过利用可通过单个控制位选择的两个连续频率调谐带,展现出 3.5 GHz 的调谐范围 (TR)。在 38 GHz 载波频率下测得的相位噪声 (PN) 分别为 - 94.3 和 - 118 dBc/Hz(频率偏移为 1 和 10 MHz)。高频分频器(频率从 40 GHz 到 5 GHz)采用三个静态 CMOS 电流模式逻辑 (CML) 主从 D 型触发器级制成。整个分频器因子为 2048。低频分频器采用工作频率为 5 GHz 的 CMOS 触发器架构。VCO 核心和分频器链的功耗分别为 18 和 27.8 mW(电源电压为 1.8 和 1 V)。使用热室在三个结温(即 − 40、25 和 125 ◦ C)下验证了电路的功能和性能。
摘要 本文展示了一种使用基于聚合物的 3D 打印制造的超轻型微波旋片衰减器 (RVA)。此外,导电聚乳酸 (PLA) 首次在 X 和 Ku 波段(8 至 18 GHz)上得到严格表征;而丙烯腈丁二烯-苯乙烯 (ABS) 也同样在 Ku 波段(12 至 18 GHz)上得到表征。利用导电 PLA 表征过程的结果,创建了一个电磁模型来预测 RVA 的性能。结果显示,即使内部几何特征复杂、混合了介电和导电 PLA 建筑材料、多个部件组装和机械旋转中心部分,我们的实验概念验证原型 RVA 仍表现出优异的 Ku 波段测量性能。与固定(即不可移动)的 3D 打印结构相比,这种可调微波控制装置代表了增材制造的更高水平的功能,为其他团体在不久的将来常规 3D 打印定制微波组件和子系统开辟了道路。
摘要 本文展示了一种使用基于聚合物的 3D 打印制造的超轻型微波旋片衰减器 (RVA)。此外,导电聚乳酸 (PLA) 首次在 X 和 Ku 波段(8 至 18 GHz)上得到严格表征;而丙烯腈丁二烯-苯乙烯 (ABS) 也同样在 Ku 波段(12 至 18 GHz)上得到表征。利用导电 PLA 表征过程的结果,创建了一个电磁模型来预测 RVA 的性能。结果显示,即使内部几何特征复杂、混合了介电和导电 PLA 建筑材料、多个部件组装和机械旋转中心部分,我们的实验概念验证原型 RVA 仍表现出优异的 Ku 波段测量性能。与固定(即不可移动)的 3D 打印结构相比,这种可调微波控制装置代表了增材制造的更高水平的功能,为其他团体在不久的将来常规 3D 打印定制微波组件和子系统开辟了道路。
高层大气中的冰云是气候模型中不确定性的主要来源。对对流层上部的冰粒子进行全球观测可以提供有关气溶胶污染对冰粒子大小影响的信息,而冰粒子大小会影响云的降水过程和反照率 [1-3]。亚毫米波辐射测量仪器可以填补大约 50 µm 至 1 mm 之间的云冰粒子大小信息的空白。例如,CloudSat 的 94 GHz 雷达可以观测直径大于 ~600 µm 的粒子,而 MODIS 红外辐射计可以观测小于 ~50 µm 的粒子 [2]。对流层水和云冰 (TWICE) 仪器试图从 6U CubeSat 平台对冰粒子大小和水蒸气剖面进行全球观测,使用 16 个亚毫米波辐射测量通道,范围
摘要本文在222-270 GHz的气体光谱中介绍了带有Bowtie-Antenna和硅透镜的发射器(TX)和一个接收器(RX),它们是在IHP的0.13 µM SIGE BICMOS技术中制造的。TX和RX使用两个集成的本地振荡器,用于222 - 256 GHz和250 - 270 GHz,可用于双波段操作。由于其大约27 dbi的定向性,带有硅透镜的单个集成的Bowtie-Antenna可以使TX的EIRP约为25 dbm,因此与先前报道的系统相比,2频段TX的EIRP更高。通过Y因子方法测量的Rx的双边噪声温度为20,000 K(18.5 dB噪声图)。气态甲醇的吸收光谱被用作用TX-和RX模块的气体光谱系统性能的量度。
宽带(多倍频程)LNA 采用各种架构设计,包括分布式(行波)、平衡和电阻反馈配置 [9]。电阻反馈被广泛用于实现多种 LNA 性能(工作频率范围、噪声系数、增益、增益平坦度、线性度、VSWR、功耗)之间的权衡 [9, 10]。在基于电阻反馈的可能配置中,共源共栅 LNA 不仅可以在其工作频带上提供平坦的增益和功率,还可以在同一频带内提供平坦的线性度和更高的输出阻抗(更好的宽带潜力)[11]。因此,本文介绍了基于电阻反馈配置和自偏置技术的单正电源共源共栅 LNA。
我们研究了一个 Rabi 型哈密顿系统,其中量子比特和 ad 级量子系统 (qudit) 通过一个公共谐振器耦合。在弱耦合和强耦合极限下,通过适当的微扰方案分析光谱。分析表明,qudit 的多级存在有效地增强了量子比特 - qudit 相互作用。发现强耦合系统的基态属于 Greenberger-Horne-Zeilinger (GHZ) 类型。因此,尽管量子比特 - qudit 强耦合,但 GHZ 状态的特定三部分纠缠的性质抑制了二部分纠缠。我们分析了量子比特 - 谐振器和量子比特 - 谐振器耦合的猝灭和绝热切换下的系统动力学。在淬灭情况下,我们发现谐振器中非绝热光子的产生会随着量子比特中的能级数而增强。绝热控制代表了制备 GHZ 态的一种可能途径。我们的分析为未来研究量子比特-量子比特系统中的相干态转移提供了相关信息。
雷达系统确定目标的距离、速度和到达角 (AoA)。本研究的重点是 AoA 确定的准确性。目标反射信号的方位角或 AoA 由相控阵系统中每个接收器链信号之间的相位差决定。接收器链之间的固有相移差异是造成不准确的一个原因。因此,为了准确确定 AoA,必须在接收器电路中控制相位变化。校准相位的模拟解决方案通常使用移相器,但有源移相器耗电,无源移相器有损耗且需要很大的面积 [5]。此外,在这些频率下使用移相器实现小于一度的精度非常复杂 [6]。另一种方法是使用
长期进化(LTE)射频电磁场(RF-EMF)广泛用于通信技术。因此,RF-EMF对生物系统的影响是一个主要的公众关注,其生理影响仍然存在争议。在我们先前的研究中,我们表明,各种人类细胞类型的连续暴露于1.7 GHz LTE RF-EMF以2 W/kg的特定吸收率(SAR)持续72小时可以诱导细胞鼻塞。为了了解LTE RF-EMF的精确细胞效应,我们详细阐述了先前研究中使用的1.7 GHz RF-EMF细胞暴露系统,它通过替换RF信号发生器并开发了基于软件的反馈系统来提高暴露功率稳定性。1.7 GHz LTE RF-EMF发电机的这种完善促进了RF-EMF暴露的自动调节,即使在72 h-h-fipsues期间,也将目标功率水平保持在3%的范围内和恒定温度。通过改进的实验设置,我们检查了在人脂肪组织衍生的干细胞(ASC),HUH7,HELA和大鼠B103细胞中连续暴露于1.7 GHz LTE RF- EMF的效果。令人惊讶的是,与未暴露的控制相比,所有细胞类型的增殖都没有显着变化。此外,在1.7 GHz LTE RF-EMF暴露的细胞中均未观察到DNA损伤和细胞周期扰动。但是,当关闭热控制系统并且在连续暴露于8 W/kg LTE RF-EMF的SAR期间,未控制RF-EMF诱导的随后温度升高时,细胞增殖在最大值时增加了35.2%。这些观察结果强烈表明,归因于1.7 GHz LTE RF-EMF暴露的细胞效应主要是由于诱导的热变化而不是RF-EMF的暴露本身。
摘要:纤维耦合的微型风险是一个有前途的平台,用于增强钻石色中心的自发发射。微电池的测得的腔体增强发射受每个腔模式的有效体积(V),腔质量因子(Q)以及微波和纤维之间的耦合。在这里,我们观察到室温光致发光,从氮气离子中心的集合到高Q / V微视孔模式,当与微电风模式的相干光谱合并时,它们可以阐明这些因素的相对贡献。广泛的发射光谱充当内部光源促进模式的识别,对几个无腔谱范围。分析收集的微型锥形的纤维锥度揭示了通过腔和纤维锥度的光谱滤波,后者我们优先找到了与高阶微波模式的伴侣。相干模式光谱用于测量Q〜1×10 5 - 在可见波长下运行的钻石微腔的报告值最高。随着微型尺寸的现实优化,我们预测purcell因子约为50个。