分子对接已成为结构性生物学和药物化学家工具包的重要组成部分。给定分子靶标的化合物和三维结构(例如,蛋白质)将化合物固定在靶标中,预测化合物的结合结构和结合能。对接可以通过筛选大型虚拟复合库来发现目标的新型配体。对接还可以为基于结构的配体优化或研究配体的作用机理提供有用的起点。计算方法的进步,包括基于物理学的和机器学习方法以及互补的实验技术,使对接成为更强大的工具。我们回顾了扩展坞的工作原理以及如何推动药物发现和生物学研究。我们还描述了其当前的局限性和克服它们的持续努力。
AKT,蛋白激酶B; AMPK,单磷酸腺苷激活的蛋白激酶; ASR,适应性应激反应; ATG13,自噬相关蛋白13;出价,每天两次; CRO,临床研究组织; del,删除; DMSO,二甲基磺氧化物; ELISA,酶联免疫吸附测定; ERK,细胞外信号 - 调节激酶; GFP,绿色荧光蛋白;要点,胃肠道肿瘤; IC 50,最大抑制浓度的一半; LC3,微管相关的蛋白质轻链3; MAPK,有丝分裂原激活的蛋白激酶; Mek,Mapk激酶; MTOR,雷帕霉素的哺乳动物靶标; PATG13,磷酸化ATG13; PI3K,磷酸肌醇3-激酶; RAF,快速加速的纤维肉瘤丝氨酸/苏氨酸激酶; Ras,大鼠肉瘤小GTPase蛋白; Rheb,Ras同源物富含大脑; RTK,受体酪氨酸激酶; SEM,平均值的标准误差; TGI,肿瘤生长抑制; ULK,UNC-51样的自噬激活激酶。AKT,蛋白激酶B; AMPK,单磷酸腺苷激活的蛋白激酶; ASR,适应性应激反应; ATG13,自噬相关蛋白13;出价,每天两次; CRO,临床研究组织; del,删除; DMSO,二甲基磺氧化物; ELISA,酶联免疫吸附测定; ERK,细胞外信号 - 调节激酶; GFP,绿色荧光蛋白;要点,胃肠道肿瘤; IC 50,最大抑制浓度的一半; LC3,微管相关的蛋白质轻链3; MAPK,有丝分裂原激活的蛋白激酶; Mek,Mapk激酶; MTOR,雷帕霉素的哺乳动物靶标; PATG13,磷酸化ATG13; PI3K,磷酸肌醇3-激酶; RAF,快速加速的纤维肉瘤丝氨酸/苏氨酸激酶; Ras,大鼠肉瘤小GTPase蛋白; Rheb,Ras同源物富含大脑; RTK,受体酪氨酸激酶; SEM,平均值的标准误差; TGI,肿瘤生长抑制; ULK,UNC-51样的自噬激活激酶。
• CD3 存在于 T 细胞上 • CD19 存在于 B 细胞上 • CD20 存在于 B 细胞上 • CD30 表达于霍奇金淋巴瘤和间变性大细胞淋巴瘤细胞上(16) • CD38 在骨髓瘤细胞中高度表达,但在正常淋巴细胞和髓细胞中表达水平较低 • CD52 存在于 B 和 T 淋巴细胞、大多数单核细胞、巨噬细胞和 NK 细胞以及某些粒细胞的表面 • CD105(内皮细胞因子)表达是血管内皮细胞增殖所必需的。靶向 CD105 是一种抑制癌细胞血管生成的新方法。CDK 4/6 细胞周期蛋白依赖性激酶 CDK4/6 与细胞周期蛋白 D 形成复合物,促进视网膜母细胞瘤(Rb)蛋白的磷酸化,从而使细胞周期进程。C-Kit 干细胞因子受体 C-Kit 参与癌变。 95% 的 GIST 细胞有 c-Kit 突变。CCR (1-10) CC 趋化因子受体 CC 趋化因子受体有 10 种亚型。CCR4 表达于某些 T 细胞恶性肿瘤的表面,以及调节性 T 细胞 (Treg) 和 T 辅助细胞 (Th2) CRAF 细胞 (RAF) 快速加速性纤维肉瘤
推荐引用 推荐引用 Plumb, Ian D.; Mohr, Nicholas M.; Hagen, Melissa; Wiegand, Ryan; Dumyati, Ghinwa; Harland, Karisa K.; Krishnadasan, Anusha; Gist, Jade James; Abedi, Glen; Fleming-Dutra, Katherine E; Chea, Nora; Lee, Jane; Barter, Devra; Brackney, Monica; Fridkin, Scott K.; Wilson, Lucy E.; Lovett, Sara A.; Ocampo, Valerie; Phipps, Erin C.; Marcus, Tiffanie M.; Smithline, Howard A.; Hou, Peter C.; Lee, Lilly C.; Moran, Gregory J.; Krebs, Elizabeth; Steele, Mark T.; Lim, Stephen C.; Schrading, Walter A.; Chinnock, Brian; Beiser, David G.; Faine, Brett; Haran, John P.;Nandi, Utsav;Chipman, Anne K.;LoVecchio, Frank;Talan, David A.;以及 Pilishvili, Tamara,“2021 年 10 月至 2022 年 7 月,信使 RNA 疫苗加强剂对美国医护人员预防 2019 年冠状病毒病的效果”(2023)。急诊医学系教职员工论文。论文 234。https://jdc.jefferson.edu/emfp/234
癌症是一大批疾病,由于人类细胞中许多不同基因的无法控制的作用,主要出现了。 有可能导致癌症发展的基因融合,缺失,扩增,过表达和其他异常。 癌症发育中的一组罪魁祸首是蛋白激酶,蛋白激酶是催化蛋白质磷酸化的大型酶。 人类基因组包含500多个蛋白激酶基因。 激酶调节各种细胞功能,例如增殖,细胞周期,凋亡,分化等。 [1]。 激酶活性的放松管制会导致这些过程的惊人变化,对于癌细胞的存活和传播可能很重要[2]。 因此,许多激酶正在被研究为药物靶标,例如ABL [3] CDKS [4-6],ERBB2(HER2)[7],Aurks [8,9],MAPKS [10]等。 许多药物(即小分子抑制剂或单克隆抗体)已经获得了卫生与公共服务部联邦机构美国食品和药物管理局(FDA)的批准。 此类其他许多药物都在临床试验或临床前开发中。 在这篇评论中,我们将讨论FDA在2020年批准的药物。 avapritinib(Blu-285)(品牌名称Ayvakit)(图1 A)于2020年1月9日获得FDA批准,用于治疗无法切除或转移性胃肠道基质肿瘤(GIST)。 它用作对人PDGFRA受体激酶的抑制剂,该疾病中有D842V突变。癌症是一大批疾病,由于人类细胞中许多不同基因的无法控制的作用,主要出现了。有可能导致癌症发展的基因融合,缺失,扩增,过表达和其他异常。癌症发育中的一组罪魁祸首是蛋白激酶,蛋白激酶是催化蛋白质磷酸化的大型酶。人类基因组包含500多个蛋白激酶基因。激酶调节各种细胞功能,例如增殖,细胞周期,凋亡,分化等。[1]。激酶活性的放松管制会导致这些过程的惊人变化,对于癌细胞的存活和传播可能很重要[2]。因此,许多激酶正在被研究为药物靶标,例如ABL [3] CDKS [4-6],ERBB2(HER2)[7],Aurks [8,9],MAPKS [10]等。许多药物(即小分子抑制剂或单克隆抗体)已经获得了卫生与公共服务部联邦机构美国食品和药物管理局(FDA)的批准。此类其他许多药物都在临床试验或临床前开发中。在这篇评论中,我们将讨论FDA在2020年批准的药物。avapritinib(Blu-285)(品牌名称Ayvakit)(图1 A)于2020年1月9日获得FDA批准,用于治疗无法切除或转移性胃肠道基质肿瘤(GIST)。它用作对人PDGFRA受体激酶的抑制剂,该疾病中有D842V突变。该决定取决于Nav-Igator(NCT02508532)的结果,这是一项多中心,单臂,开放标签试验,招募了43例携带PDGFRA外显子18突变的患者,其中包括38例PDGFRA D842V突变患者[11]。selumetinib(AZD6244,Arry-142886)(品牌Koselugo)(图1 A)由FDA于2020年4月10日证明,用于治疗I型神经纤维瘤I型(NF1),这会导致沿着大脑的肿瘤的生长以及其他部分的肿瘤生长。它被用作对具有V600E突变的BRAF激酶的抑制剂。该决定取决于50名2-18岁儿童的临床试验(NCT01362803)的结果[12]。tucatinib(ONT-380,Arry-380)(品牌Tukysa)(图1 A)于2020年4月17日批准了FDA,用于治疗不可切除或转移性的HER2阳性乳腺癌。它被用作人ERBB2受体激酶的抑制剂。该决定是根据HER2CLIMB临床试验的结果(NCT02614794)做出的,这是一项关于Tucatinib与安慰剂的研究,并与Capecitabine和Trastuzumab结合使用,招募了612名患者[13]。pemigatinib(incb054828)(品牌pemazyre)(图1 A)于2020年4月17日批准了FDA,用于治疗高级/转移性或外科手术无法切除的胆管癌。它用作人FGFR2受体激酶的抑制剂。
•液体保留和水肿:水肿和严重的液体保留发生了。定期称重患者,并通过药物中断和利尿剂来管理意外的快速体重增加。(5.1,6.1)•血液学毒性:已经发生了细胞质,尤其是贫血,中性粒细胞减少症和血小板减少症。通过减少剂量,剂量中断或治疗中断进行管理。在第一个月进行每周的完整血液计数,每两周一次,此后定期进行。(5.2)•充血性心力衰竭和左心室功能障碍:严重的充血性心力衰竭和左心室功能障碍,特别是在合并症和危险因素的患者中。监测和治疗心脏疾病或心脏衰竭危险因素的患者。(5.3)•肝毒性:严重的肝毒性,包括死亡。在开始治疗前和每月或临床上的每月开始之前评估肝功能。监测肝功能与已知与肝功能障碍相关的化学疗法结合使用。(5.4)•出血:已在新诊断的CML和GIST患者的临床研究中报道了3/4级出血。GI肿瘤部位可能是GIST中GI出血的来源。(5.5)•胃肠道疾病:胃肠道(GI)穿孔,有些致命。(5.6)•嗜酸性心脏毒性:心脏源性休克/左心室功能障碍与具有高嗜酸性粒细胞水平相关的疾病(例如HES,MDS/MDS/MPD和ASM)的患者与Imkeldi的启动有关。(5.7)•皮肤病毒性:据报道,使用Imkeldi使用了大胆的皮肤病反应(例如,多形性红斑和史蒂文斯 - 约翰逊综合征)。(5.8)•甲状腺功能减退:甲状腺功能减退症的甲状腺功能减退症已在接受左甲状腺素替代的甲状腺切除术患者中。密切监测此类患者的TSH水平。(5.9)•胚胎毒性毒性:可能造成胎儿伤害。向胎儿潜在风险的生殖潜力建议女性,并使用有效的避孕。(5.10,8.1)•儿童和青少年的生长迟缓:据报道,接受Imkeldi的儿童和预科生发生的增长迟缓。建议在Imkeldi治疗下对儿童的生长进行密切监测。(5.11,6.2)•肿瘤裂解综合征:建议密闭监测。(5.12)•与驾驶和使用机械有关的障碍:接受伊马替尼的患者报告了机动车事故。注意驾驶汽车或操作机械的患者。(5.13)•肾脏毒性:接受imkeldi的患者可能发生肾功能下降。在基线和治疗过程中评估肾功能,并注意肾功能障碍的危险因素。(5.14)•测量设备:建议患者使用精确的毫升测量装置进行测量。通知患者,家茶匙不是准确的测量装置,可能导致过量,这可能导致严重的不良反应。(5.15)建议患者要求其药剂师建议使用适当的按入瓶适配器和口服注射器,以便用于测量正确剂量的说明。
简介 我们都见过许多书籍和文章,其中的一张图试图捕捉系统架构的要点。但仔细查看这些图上显示的一组框和箭头,就会发现它们的作者已经努力在一个蓝图上表示比它实际能够表达的更多内容。这些框代表正在运行的程序吗?还是源代码块?还是物理计算机?还是仅仅是功能的逻辑分组?这些箭头代表编译依赖关系吗?还是控制流?还是数据流?通常它包含所有内容。架构是否需要单一的架构风格?有时,软件架构会因为系统设计过早地对软件进行分区,或者过分强调软件开发的某个方面而受到损害:数据工程、运行时效率、开发策略和团队组织。通常,架构也无法解决所有“客户”(或南加州大学称之为“利益相关者”)的顾虑。这个问题已被多位作者指出:Garlan & Shaw 1 、CMU 的 Abowd & Allen、SEI 的 Clements。作为一种补救措施,我们建议使用多个并发视图来组织软件架构的描述,每个视图解决一组特定的顾虑。
POPIA 下的义务 • 人工智能隐私影响评估 • 了解人工智能如何破坏 POPIA 的条件 • 了解您关于人工智能的披露义务 • 了解人工智能独特的安全风险 • 为人工智能项目协商数据处理协议 • 建立流程来审核您是否遵守 POPIA • 探索监管框架 • 人工智能可以成为合同的一方吗?• 处理以 AI 为标的的合同 • 讨论起草与 AI 相关的合同的最佳实践 • AI 驱动的智能合约 • IP 的本质 • IP 法如何适用于 AI • AI 作为 IP 与 AI 创造 IP • 版权、专利、商标 • 讨论通过合同保护 AI 相关 IP 的最佳实践 第二天 • 侵权的要点 • 侵权的要素 • 侵权如何适用于 AI • 关于纯经济损失的注意义务 • AI 造成伤害:工具性论点 • AI 如何挫败因果关系 • 讨论避免 AI 相关责任的最佳实践 • King IV 和 IT 治理:AI 视角 • 公司董事是否有权委托给 AI?• 公司董事是否有委托给 AI 的义务?• AI、董事和商业判断规则
根据既往对晚期GIST患者治疗的经验和证据,伊马替尼、舒尼替尼、瑞戈非尼被推荐作为一线、二线、三线治疗方案(5)。但长期使用TKIs可能导致耐药,主要是由于继发耐药KIT突变的克隆生长所致。这些KIT继发突变通常位于外显子13和14编码的三磷酸腺苷(ATP)结合口袋或外显子17和18编码的活化环(A环)中(6,7)。作为II型TKI,舒尼替尼对原发性KIT外显子9突变和继发性KIT外显子13和14突变均有良好作用,并积极抑制ATP结合口袋突变,但对活化环突变无作用(8,9)。此外,舒尼替尼在抗血管生成方面也有效。舒尼替尼的常见不良反应包括血液学毒性、胃肠道反应、腹泻、蛋白尿、高血压和甲状腺功能异常、手足综合征、疲劳等。相反,avapritinib 是一种高效、选择性的 I 型 TKI,可积极抑制 KIT 和 PDGFRA 活化环突变体,尤其是 KIT D816V 和 PDGFRA D842V(10)。avapritinib 接受者中最常见的不良反应(所有级别)是贫血、水肿、恶心、疲劳/乏力、认知障碍和呕吐。
Mektovi ®(binimetinib)是一种激酶抑制剂,与 Braftovi ®(encorafenib)联合用于治疗 BRAF V600E 或 V600K 突变的不可切除或转移性黑色素瘤患者,以及治疗 BRAF V600E 突变的转移性非小细胞肺癌(NSCLC)成人患者。美国国家癌症综合网络 (NCCN) 指南还建议将 Mektovi 用于治疗黑色素瘤,用于既往免疫检查点抑制剂治疗后进展的 NRAS 突变肿瘤,多系统、单系统或 CNS 病变伴有丝裂原活化蛋白 (MAP) 激酶途径突变的朗格汉斯细胞组织细胞增生症,低级别浆液性癌,以及与伊马替尼 (Gleevec) 联合用于治疗琥珀酸脱氢酶 (SDH) 缺陷型胃肠道间质瘤 (GIST),且伴有明显残留病灶(R2 切除术)、不可切除的原发病、肿瘤破裂或复发/转移性疾病。有关 FDA 批准的黑色素瘤 BRAF V600 突变检测方法的信息,请访问:http://www.fda.gov/CompanionDiagnostics。1 承保信息:会员需要满足以下标准才能获得承保。对于 19 岁以下的会员,处方将自动处理,无需进行承保范围审查。一些州规定,对于某些诊断或某些情况下的标示外用药,必须获得福利承保。一些州还规定必须使用其他 Compendium 参考资料。如果适用此类规定,则其效力将取代福利文件或通知标准中的语言。