Maiaspina 冰川是兰格尔-圣伊莱亚斯国家公园和保护区内最大的冰川(图 1)。该冰川面积超过 2,650 平方公里。被复杂的褶皱冰碛系统覆盖,这是 Ma&pin& 支流之间的流入速率和体积差异的结果。在其下游,冰川形成一个宽阔的球状。缓坡的山麓叶。该叶面积超过 1,500 平方公里,是美国地质调查局 (USGS) 正在进行调查的地点。将现场观察和测量与数字遥感数据的实验室分析相结合。尽管美国地质调查局自 19 世纪中叶以来就一直积极调查马拉斯皮纳冰川及其周边地区,但拉塞尔于 19 世纪 80 年代发明了这种冰川,而美国地质调查局于 1986 年 11 月获得了 Malasptna 冰川的数字侧视机载雷达 (SLAR) 数据(图 ZJ),从而促成了本研究。调查有两个主题:(1) 使用雷达遥感提供有关 Malaspina 冰川下基岩特征以及基岩与冰川表面特征关系的信息,以及 (2) 使用雷达提供有关冰川历史的信息。续第 3 页图 1。地图显示了 Wrangeli-Sr. Elias Natronai 公园和保护区内 Maiaspjna 冰川的位置
Glacier ® II 犁无需工具即可在四十秒或更短时间内安装完毕(初始安装支架后)——比市面上任何其他犁都快得多。我们的 Easy Lift 犁
准确量化径流源并了解冰川山盆地中的水文过程对于面对气候变化的有效水资源管理至关重要。这项研究旨在通过利用集成的陆地表面,冰川能量平衡和河流路线模型来确定吉尔吉斯斯坦内部蒂恩 - 山山脉中各种径流源的贡献。考虑了对太阳辐射和云传播过程的局部地形影响,降低了网格的气象强迫数据。然后,对观察到的排放,冰川质量平衡和雪水等效的综合模型进行评估,重点是Kara-Batkak冰川参考位点。短波辐射校正对于提高模型模拟的准确性尤为重要。结果表明,峰值冰川熔体的贡献发生在7月和8月,一些盆地达到54%。每年,盆地中冰川的平均贡献为19%,而融雪和降雨的比率分别为58%和23%。这项研究强调了综合建模方法在理解和量化数据筛分高山区域中的径流组件方面的实用性。掺入观察到的冰川数据对于在当前气候条件下准确表示水文过程至关重要。这些发现强调了考虑冰川动态及其对水资源的影响,以告知冰川山区盆地的有效水管理策略。
以及形状和大小各异的山麓冰川。冰川长度从大约一公里到七十多公里不等(哈伯德冰川终止于阿拉斯加,在加拿大境内长 72 公里,总长 112 公里);面积从几平方公里到西沃德冰川的 1,200 多平方公里不等。温带冰川在低海拔地区很常见,特别是在轴线(分水岭)的太平洋一侧。即使在低海拔地区,轴线的北侧(大陆侧)也有亚极地冰川。在高海拔高原上存在具有“极地”温度的冷冰川,例如洛根山(5,956 米)。该地区存在大量通常为亚极地的涌动冰川,这一点尤其值得注意。这个主题在这里受到最多的关注,因为在卫星图像上很容易检测到浪涌的诊断特征,从中可以进行与冰川动态相关的时间序列测量,如特威兹缪尔冰川和洛厄尔冰川所示。
以及形状和大小各异的山麓冰川。冰川长度从大约一公里到七十多公里不等(哈伯德冰川终止于阿拉斯加,在加拿大境内长 72 公里,总长 112 公里);面积从几平方公里到西沃德冰川的 1,200 多平方公里不等。温带冰川在低海拔地区很常见,特别是在轴线(分水岭)的太平洋一侧。即使在低海拔地区,轴线的北侧(大陆侧)也有亚极地冰川。在高海拔高原上存在具有“极地”温度的冷冰川,例如洛根山(5,956 米)。该地区存在大量通常为亚极地的涌动冰川,这一点尤其值得注意。这个主题在这里受到最多的关注,因为在卫星图像上很容易检测到浪涌的诊断特征,从中可以进行与冰川动态相关的时间序列测量,如特威兹缪尔冰川和洛厄尔冰川所示。
以及形状和大小各异的山麓冰川。冰川长度从大约一公里到七十多公里不等(哈伯德冰川终止于阿拉斯加,在加拿大境内长 72 公里,总长 112 公里);面积从几平方公里到西沃德冰川的 1,200 多平方公里不等。温带冰川在低海拔地区很常见,特别是在轴线(分水岭)的太平洋一侧。即使在低海拔地区,轴线的北侧(大陆侧)也有亚极地冰川。在高海拔高原上存在具有“极地”温度的冷冰川,例如洛根山(5,956 米)。该地区存在大量通常为亚极地的涌动冰川,这一点尤其值得注意。这个主题在这里受到最多的关注,因为在卫星图像上很容易检测到浪涌的诊断特征,从中可以进行与冰川动态相关的时间序列测量,如特威兹缪尔冰川和洛厄尔冰川所示。
和不同形状和大小的山麓冰川。冰川长度从大约一公里到七十多公里不等(哈伯德冰川终止于阿拉斯加,在加拿大境内长 72 公里,总长 112 公里);面积从几平方公里到西沃德冰川的 1,200 多平方公里不等。温带冰川在低海拔地区很常见,特别是在轴线(分水岭)的太平洋一侧。即使在低海拔地区,轴线的北侧(大陆侧)也有亚极地冰川。在高海拔高原上存在具有“极地”温度的冷冰川,例如洛根山(5,956 米)。该地区存在大量通常为亚极地的涌动冰川,这一点尤其值得注意。这个主题在这里受到最多的关注,因为在卫星图像上很容易检测到浪涌的诊断特征,从中可以进行与冰川动态相关的时间序列测量,如特威兹缪尔冰川和洛厄尔冰川所示。
以及形状和大小各异的山麓冰川。冰川长度从大约一公里到七十多公里不等(哈伯德冰川终止于阿拉斯加,在加拿大境内长 72 公里,总长 112 公里);面积从几平方公里到西沃德冰川的 1,200 多平方公里不等。温带冰川在低海拔地区很常见,特别是在轴线(分水岭)的太平洋一侧。即使在低海拔地区,轴线的北侧(大陆侧)也有亚极地冰川。在高海拔高原上存在具有“极地”温度的冷冰川,例如洛根山(5,956 米)。该地区存在大量通常为亚极地的涌动冰川,这一点尤其值得注意。这个主题在这里受到最多的关注,因为在卫星图像上很容易检测到浪涌的诊断特征,从中可以进行与冰川动态相关的时间序列测量,如特威兹缪尔冰川和洛厄尔冰川所示。
全球冰川静修会导致从局部(例如水的供应性)到全球(例如,海平面上升)量表的重要环境变化。了解气候变化的影响及其对冰川质量平衡(MB)的变化需要考虑在各种规模上的气候强迫的影响。最近的研究报道说,冰川和局部气候变化都受到各种气候强迫的影响,包括大规模的因素,例如厄尔尼诺尼诺 - 南方振荡(ENSO)或南方环形模式(SAM),到区域规模的因素,例如大气和海洋循环模式,海冰和海面温度。这些影响的程度取决于每个冰川区域的地理位置。鉴于冰川及其当地气候的环境和社会经济意义,长期冰川气候研究对于提高我们对他们过去,现在和未来变化的理解至关重要。在这个项目中,我们首先是使用机器学习(ML)技术和区域气候模型(RCM)输出的组合来重建冰川MB时间序列从热带纬度重建。然后,我们旨在研究从热带到极地纬度地区冰川质量平衡的年际和季节性变异性(即安第斯山脉,巴塔哥尼亚和南极半岛地区),及其与季节性和年际时间尺度上的气候强迫因子的关系。在现有文献的基础上,我们将使用最先进的ML算法来开发可靠的模型,以捕获不同气候和地形变量与冰川MB之间复杂的非线性相互作用。这些模型将使用历史冰川MB数据和RCM输出进行培训,并使用独立数据集进行验证。考虑到特定的大型至区域规模气候强迫的影响,该项目的结果将对气候变化对热带对热带冰川的影响提供宝贵的见解。这些