重建更新世的冰川时间和程度对于理解古气候至关重要。虽然已在北美山脉的西部进行了广泛的研究,但晚更新世的冰川山脉,但科罗拉多州西部麋鹿范围的冰川历史仍在研究中,尤其是在东河水域(East River Watershed),这是一个强烈的科学焦点。在这里,我们使用宇宙基因核素暴露和深度 - 轮廓约会方法来确定东河流域冰川的时机。我们使用冰川建模来重建古射液仪,并量化过去的气候条件。我们的发现表明,东河冰川从其最大位置撤退了约17-18 ka,转移到13至15 ka之间的衰老位置,然后经历了更大的静修至13 ka左右的高海拔。冰川建模表明,与现代条件相比,与现代条件相比,温度降低约为17-18 ka的最大冰扩展可能是维持的。此外,温度降低约为-4.0°C的温度降低可能支持13-15 ka的冰位。这些结果提供了有关东河分水岭和更广阔的西麋鹿范围以及晚期更新世期间更广阔的西麋鹿范围以及古气候条件的见解,这可能有助于对东河流域关键区域进化的未来研究。
朱诺,美国阿拉斯加,人口约30,000名居民,在2023年创下了160万巡航乘客的记录,在最繁忙的日子里,有多达7艘大型游轮,大约有20,000名游客。[1]尽管这些游客以3.75亿美元的价格为这座城市带来了可观的收入,但[2]他们还带来了与拥挤的问题,这些问题使该市正在努力限制客人的数量。具有讽刺意味的是,朱诺的首要景点之一Mendenhall Glacier一直在退缩,这主要是由于过度造成的,部分原因是越来越多。冰川自2007年以来就已经退缩了八个足球场,导致许多当地人担心游客和相关的收入最终将随着冰川而消失。[3]幸运的是,朱诺还有其他景点,包括观看鲸鱼和雨林,并可以保持其作为旅游目的地的地位,前提是他们可以制定并制定可持续旅游业的计划。
37 Langway(1958; 1967)。 38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -37 Langway(1958; 1967)。38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -38 Langway(1967,p。7)。39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -39 Martin-Nielsen(2016年,第95页)。40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。42“冰盖”是大于50,000 km 2的圆顶冰川。这种类型的冰川仅存在于格陵兰和南极。43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。(2010年,第33页)。有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。86 - 100)。44 Martin-Nielsen(2013年,第87 - 88)。45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。(1958年1月28日),给威利·丹斯加德的信; Renaud,A。([[1962年11月]),Egig 1957 -
1 截至年末的自有发电容量(MW) 3,339.5 3,339.5 1.1 煤炭 370 370 https://www.pse.com/pages/energy-supply/thermal-power 1.2 天然气 1,928 1,928 https://www.pse.com/pages/energy-supply/thermal-power 1.3 核能 0 0 1.4 石油 0 0 1.5 可再生能源资源总量 1,037 1,037 1.5.1 生物质/沼气 0 0 1.5.2 地热 0 0 1.5.3 水力发电 263 263 https://www.pse.com/en/pages/energy-supply/hydro-power 1.5.4 太阳能 0.5 0.5 https://www.pse.com/en/pages/energy-supply/solar-power 1.5.5 风能 773 773 https://www.pse.com/en/pages/energy-supply/wind-power 1.6 其他 5 5 Crystal Mountain 应急发电机 (3 MW)、Glacier 电池储能系统 (2 MW)
•几十年的酸性气体 / CO 2隔离经验和对地质的透彻理解•产生了约500,000吨的CO 2 E偏移量和约90,000吨与Advantage冰川天然气工厂的运营相关的排放性能信用•“访问权利”,“访问权利”,使现有的隔离设施允许entropy完成首次完整的全尺寸商业CCS Project < / div / div / div / div / div>
抽象冰川和雪融化是溪流的主要水源,以及喜马拉雅西部上印度河上游地区的河流。然而,该冰川盆地的径流幅度预计随着流域的可用能量而变化。在这里,我们使用基于物理的能量平衡模型来估计Chandra盆地上部冰川的表面能量和表面质量平衡(SMB),从2015年到2022年。观察到强烈的季节性,净辐射是夏季的主要能量通量,而在冬季则以潜在而明智的热通量为主导。估计的Chandra盆地冰川上部的平均年度SMB为-0.51±0.28 m W.E.a -1,从2015年到2022年的7年中的累积SMB为-3.54 mW.E。我们发现,冰川的方面,坡度,大小和升高等地理因素有助于研究区域内SMB的空间变异性。发现,需要增加42%的降水量来抵消Chandra盆地上部冰川的空气温度升高而导致的额外质量损失。
通过讲座,小组工作和练习研讨会将概述气候变化对山地冰圈的影响。主题包括:使用多种技术,冰和积雪采样,过渡性冰冻层环境中的水质评估,通过教育分析的古环境重建,通过熟悉环境中的地质多样性和生态系统的映射等,冰川进化和冰川风险监测,水质评估等。也将进行附近冰川区域的游览。研讨会的目标受众是博士生。我们能够容纳15名学生。
评估陆地储水(TWS)组件对于了解区域气候和水资源至关重要,尤其是在阿富汗等干旱和半干旱地区。鉴于地面数据的稀缺性,本研究利用遥感数据集来量化储能变化。我们将重力恢复和气候实验(GRACE)和GRACE随访(Grace-Fo)数据与水盖,全球陆地水存储(GWLS),流域陆地表面模型(CLSM)以及气候变量(降水量,温度,潜在的蒸发)使用人工神经网络(ANN)和随机森林(ANN)和随机森林(RF)(RF)(RF)。此外,还利用了冰,云和土地升高卫星(ICESAT-1,2)数据来估计冰川质量变化。使用黄土(STL)的季节性趋势分解来评估2003年至2022年的TWS变化。我们的方法论揭示了在阿富汗的主要盆地中重建和观察到的TWS Alome之间的高相关性(r = 0.90 - 0.97)。冰川质量分别在2003 - 2009年和2018 - 2022年分别降低-0.59和-1.17 GT/年,而总TWS下降了-2.46 GT/年。HRB经历了最大的TWS损失(-1.47 GT/年),这主要是由于地下水耗竭(-1.18 GT/年)。这些发现强调了我们评估水资源的重要性,为数据渣国家的气候变化提供了至关重要的见解。
投标前会议和/现场访问:投标前会议和现场访问将于 2019 年 2 月 14 日下午 2:00(当地时间)举行。有意向的投标人将在阿拉斯加铁路搬运段会面,该段位于 Portage Glacier 路铁路道口东侧。请根据天气和安全穿着合适的衣服;安全帽、安全眼镜和钢头靴。这不是强制性会议,但鼓励有意向的公司参加。投标人未能参加投标前会议绝不会免除投标人严格遵守本 ITB 条款、条件和规范的真实意图和含义执行工作的责任。您的投标包(资格和投标)必须完整。请参阅随附的说明和条件。按照 19-02-207062 中的说明,将投标文件装入密封的信封中寄回。通过传真收到的投标将不予考虑。投标应按照此处提供的表格提交。亲自送达的投标、修改或撤回必须在上述日期和时间之前送达 ARRC 合同部门。
最大的地震是Kodiak岛西南部7月28日发生的8.2级事件。随后发生了大约1,300次余震,包括8月14日和10月11日的两个级别6.9次。其他活跃地区包括7月至9月在阿拉斯加室内的哈丁湖附近的地震序列和9月在Yakutat湾附近。阿拉斯加大陆最大的地震是5月31日的M6.1 Chickaloon地震,在阿拉斯加中南部广泛感觉到。AEC继续监视2018 M7.1锚固范围内的持续活动,2018 M6.4 Kaktovik,2018 M7.9 M7.9近海Kodiak余震序列,Purcell山区地震群和Wright Glactier Cluster Juneau北部的Wright Glacier Cluster。新的研究继续探索北坡和布鲁克斯山脉上无法解释的地震集群。这些地区对于阿拉斯加的石油和天然气经济至关重要,现在可以对AEC扩大的地震传感器网络进行更彻底的研究。