Gabor 滤波器、GLCM 和 DWT 在脑肿瘤分类中的表现评估 Fausat Fadeke Agboola 1;Wasiu Oladimeji Ismaila 2;Oluyinka Iyabo Omotosho 2;Adeleye Samuel Falohun 3;和 Folasade Muibat Ismaila 4 1 尼日利亚阿达马瓦州约拉莫迪博阿达玛大学物理科学学院计算机科学系。 2 尼日利亚奥约州奥格博莫索拉多克阿金托拉理工大学计算机与信息学学院计算机科学系。 3 尼日利亚奥约州奥格博莫索拉多克阿金托拉理工大学工程与技术学院计算机工程系。 4 尼日利亚奥顺州理工学院计算机科学系。摘要 大脑对身体功能至关重要,如果不加以治疗,肿瘤可能会侵袭大脑,导致死亡、不受控制的生长和转移。因此,自动分类脑肿瘤类型对于加快治疗、制定更好的计划和提高患者生存率至关重要,因为人工诊断脑肿瘤类型在很大程度上依赖于放射科医生的专业知识和敏感性。因此,本文使用 Kaggle 数据库中的四类脑 MRI 肿瘤,评估了 Gabor 滤波器、灰度共生矩阵 (GLCM) 和离散小波变换 (DWT) 在识别正常和异常脑肿瘤方面的性能。性能分析侧重于二元分类,以确定每种特征提取方法的功效。研究发现,Gabor 特征的假阳性率 (FPR) 为 7.61%,假阴性率 (FNR) 为 8.57%,灵敏度为 91.43%,精确度为 81.36%,准确度为 92.13%,时间为 985.34 秒。 GLCM 特征的 FPR 为 9.69%,FNR 为 9.52%,灵敏度为 90.48%,精度为 77.24%,准确率为 90.36%,时间为 364.74 秒。DWT 特征的 FPR 为 11.42%,FNR 为 11.43%,灵敏度为 88.57%,精度为 73.81%,准确率为 88.58%,时间为 275.53 秒。GLCM 产生了最有效的特征提取器,它可以作为一种有用的技术,并作为放射科医生诊断脑肿瘤的第二读取器,以降低死亡率。关键词:Gabor 滤波器、GLCM、DWT、MRI 图像、脑肿瘤、分类。引言脑肿瘤是一种起源于脑内的疾病,当不规则细胞不受控制和限制地生长时,就会无视正常的细胞生长规律。
摘要。使用基于特征的混合方法,将基于变换的特征与基于图像的灰度共生矩阵特征相结合。在对脑出血 CT 图像进行分类时,基于特征的组合策略比基于图像特征和基于变换特征的技术表现更好。使用深度学习技术(尤其是长短期记忆 (LSTM))的自然语言处理已成为情绪分析和文本分析等应用中的首选。这项工作提出了一个完全自动化的深度学习系统,用于对放射数据进行分类以诊断颅内出血 (ICH)。长短期记忆 (LSTM) 单元、逻辑函数和 1D 卷积神经网络 (CNN) 构成了建议的自动化深度学习架构。这些组件均使用 12,852 份头部计算机断层扫描 (CT) 放射学报告的大型数据集进行训练和评估。
摘要:目的:研究的目的是定量评估微针中疗法在减少皮肤变色方面的有效性。使用灰级共同出现矩阵(GLCM)方法分析结果。材料和方法:研究了12至68岁的12名女性前臂(7×7厘米)的皮肤。使用含有12%抗坏血酸的制剂的皮肤化剂进行微针中疗。每位志愿者都接受了一系列四个微针中疗治疗。使用图像分析和处理方法对治疗的有效性进行了量化。在一系列化妆程序之前和之后,以交叉极光拍摄了一系列临床图像。然后,通过确定灰级共发生矩阵(GLCM)算法的参数来分析处理的区域:对比度和同质性。结果:在图像预处理期间,将志愿者的临床图像分为红色(R),绿色(G)和蓝色(B)通道。与手术前拍摄的照片相比,手术后拍摄的照片显示出皮肤亮度的增加。治疗后皮肤亮度的平均增加为10.6%,GLCM对比度的平均下降为10.7%,平均同质性增加了14.5%。基于分析,在RGB量表的B通道中进行的测试中观察到GLCM对比度的最大差异。随着GLCM对比的减少,术后同质性的增加为0.1,为14.5%。
细胞异常会导致脑肿瘤发育。它是全球死亡率的主要原因之一。早期肿瘤发现可以避免数百万死亡。磁共振成像(MRI)是最流行的成像技术之一,可用于早期检测到脑肿瘤,因此可以改善患者的存活率。MRI中肿瘤的可见性得到提高,这有助于随后的治疗。 这项研究试图尽早检测脑肿瘤。 使用MRI的建议的CAD系统有可能帮助医生和其他专家发现脑肿瘤的存在。 这项工作利用机器学习来提高分类精度。 这项工作是在许多顺序的步骤中进行的,包括使用中位过滤器进行MRIS降噪,使用灰度级别的共存在矩阵(GLCM)和局部二元模式(LBP)提取肿瘤特征的特征,然后使用特征IS进行分类(IG),最终使用机器选择Algorith,最终使用了类型确定并将MRI分类为肿瘤或无肿瘤。 使用GLCM和LBP功能的组合特征向量的提出方法的实验结果,使用IG显示98%的精度,使用PCA的精度为97%。 关键词:脑肿瘤; MRI;灰度合作矩阵GLCM;局部二进制图案LBP;功能选择。肿瘤的可见性得到提高,这有助于随后的治疗。这项研究试图尽早检测脑肿瘤。使用MRI的建议的CAD系统有可能帮助医生和其他专家发现脑肿瘤的存在。这项工作利用机器学习来提高分类精度。这项工作是在许多顺序的步骤中进行的,包括使用中位过滤器进行MRIS降噪,使用灰度级别的共存在矩阵(GLCM)和局部二元模式(LBP)提取肿瘤特征的特征,然后使用特征IS进行分类(IG),最终使用机器选择Algorith,最终使用了类型确定并将MRI分类为肿瘤或无肿瘤。使用GLCM和LBP功能的组合特征向量的提出方法的实验结果,使用IG显示98%的精度,使用PCA的精度为97%。关键词:脑肿瘤; MRI;灰度合作矩阵GLCM;局部二进制图案LBP;功能选择。
摘要:准确诊断精神分裂症是一种复杂的精神疾病,对于有效管理治疗过程和方法至关重要。各种类型的磁共振 (MR) 图像都有可能作为精神分裂症的生物标志物。本研究旨在通过结构 MR 图像对精神分裂症患者和健康对照者大脑双侧杏仁核、尾状核、苍白球、壳核和丘脑区域可能出现的纹理特征差异进行数值分析。为此,使用机器学习方法对从右脑、左脑和双侧大脑的五个区域获得的灰度共生矩阵 (GLCM) 特征进行分类。此外,还分析了这些特征在哪个半球更具特色,以及 Adaboost、Gradient Boost、eXtreme Gradient Boosting、随机森林、k-Nearest Neighbors、线性判别分析 (LDA) 和朴素贝叶斯中的哪种方法具有更高的分类成功率。检查结果显示,左半球这五个区域的 GLCM 特征在精神分裂症患者中的分类性能优于健康人。使用 LDA 算法,在健康和精神分裂症患者中,分类成功率为 100% AUC、94.4% 准确率、92.31% 灵敏度、100% 特异性和 91.9% F1 得分。因此,这表明五个预定区域而不是整个大脑的纹理特征是识别精神分裂症的重要指标。
