“战区”弹道导弹。虽然 SBIRS 是一种先进的红外 (IR) 传感器系统,但中国和俄罗斯都开发了多种远程导弹,旨在逃避 SBIRS 和其他美国传统导弹预警传感器的探测。这些新武器包括低空飞行的超音速巡航导弹,以及在大气中飞行并机动的 5 马赫以上的高超音速导弹。高超音速“助推滑翔”武器由火箭助推器组成,可将无动力的滑翔飞行器发射到低空轨迹。SBIRS 无法检测或跟踪这些高超音速滑翔飞行器,因为它们与助推器分离后具有非常低的红外特征。1 虽然巡航导弹通常是动力驱动的,但它们的红外特征也很低,无法被当前的高架系统检测到。此外,巡航导弹和高超音速武器都可以机动以创建不可预测的飞行路径,使它们难以被地面
本文主要研究以太阳能电池为主要动力源的无人机 (UAV) 的空气动力学和设计。该过程包括三个阶段:概念设计、初步设计和飞行器计算流体动力学分析。电动无人机的主要缺点之一是飞行时间;从这个意义上说,挑战在于创建一种可以提高无人机续航能力的空气动力学设计。在本研究中,飞行任务从飞行器设计尝试达到最大高度开始;然后,无人机开始滑翔,并通过太阳能电池实现电池电量恢复。使用概念设计,空气动力学分析重点关注作为滑翔飞行器的无人机,计算从估计重量和空气动力学开始,并以最佳滑翔角度结束此阶段。事实上,气动分析是针对初步设计进行的;此步骤涉及无人机的机翼、机身和尾翼。为了实现初步设计,需要对气动系数进行估算,并进行计算流体动力学分析。
SYSCOM:ONR 赞助计划:ONR 代码 351:高超音速过渡的基础和应用研究目标:美国海军的常规快速打击 (CPS) 计划 TPOC:Eric Marineau 博士 eric.marineau@navy.mil 其他过渡机会:该技术专门针对中程或中程助推滑翔高超音速武器,这些武器可从减少二模不稳定性对边界层过渡的贡献中受益,包括国防高级研究产品局 (DARPA) 的战术助推滑翔 (TBG) 计划和美国空军先进快速反应武器 (ARRW) 计划。注:该图显示了 DARPA 的 Falcon 高超音速测试飞行器上的碳/碳气动外壳的示例。正在开发的气动外壳材料将延迟或防止高超音速飞行器的边界层过渡,降低热负荷和由此产生的工作温度,从而减少绝缘重量并增加飞行器续航里程。
滑翔机在空气动力学研究中的另一个非常重要的用途是测量飞行性能。有几种方法可以确定飞机的滑翔比,其中比较法最准确且最省时。通过使用经过精确校准的滑翔机,可以准确知道滑翔极线曲线,并与另一架作为测量测试品的滑翔机编队飞行,可以通过测量不同空速下的相对垂直速度来确定未知的极线曲线。因此,理想情况下,任何大气扰动都会被抵消,并且可以在 2-5 次飞行中非常准确地确定极线曲线。Ka6E、Cirrus 和 DG300/17 用于这些测量,使用摄影测量法来确定两架飞机之间的相对垂直速度——GPS 随 DG300/17 引入,并继续用于 Discus-2c DLR,现在使用移动基准差分 GNSS 技术。
高超音速武器主要有两种类型:高超音速巡航导弹 (HCM) 和高超音速滑翔飞行器 (HGV)。北约科学技术组织等一些机构还将高超音速“后隐形”攻击和侦察机列入其中,预计到 2030 年代问世。HCM 是现有巡航导弹的加速版,飞行高度为 20-30 千米。它们由称为超音速燃烧冲压发动机的吸气式喷气发动机推进。这些“超燃冲压发动机”在燃烧阶段之前将进入的空气压缩在一个短漏斗中,使发动机在高速下极其高效地运转。由于超燃冲压导弹直接从大气中获取必要的氧气,因此体积更小、机动性更强。相比之下,HGV 则是无推进式,依靠火箭助推滑翔技术升入高层大气。在 40-100 公里的高度释放后,它们以高超音速飞行,无需关闭动力即可打击目标。它们能够机动并在不同高度释放,这使得它们的轨迹难以预测和计算。
上个月我们完成了如何减少锯齿状爬升数据和确定最陡角度爬升速度 V x 以及相关爬升角度和爬升梯度的说明。本月我们将解决下降性能问题,如果您认为下降只不过是反向爬升,那么您基本上是对的。如何让飞机获得最佳下降性能可能是您在巡航前往目的地时讨论的问题。与副驾驶或乘客开玩笑是一种很好的方法——砰!发动机熄火了。现在怎么办?有一件事是肯定的。现在不是思考飞机最佳滑行速度的好时机。更好的时间是您的下一次飞行,确定飞机的滑行性能比我们在过去几个月中详细介绍的爬升性能测试更容易。飞机的爬升率取决于功率的大小
条件是专门为本研究创建的。风速设置为 80 kt(150 公里/小时),相当于蒲福风级 17° 风暴强度时的风速。飓风期间也可以发现类似的风速。除了风力变化外,ILS 的另一个困难是,当超过 1,500 英尺时,风向会发生变化。风引起的湍流强度设置为最高水平。图 8 显示了 a) 在 Google Earth 中制作的 3D 路径着陆进近,以及 b) 使用 FS Instructor 创建的显示下滑道以及应用的理想 GP 线的图表。可以看出,ILS 未能引导飞机进入跑道。在进近开始时,飞机偏离了理想下滑道。由 ILS 引导的飞机在距离跑道外缘约 15 米处着陆。在这种情况下着陆时,飞行员有责任中断进近。如果在达到决策高度时发生这种情况,飞机将不会位于跑道轴线上。
Philips Oneblade拥有一项革命性的技术,设计用于面部美容。它可以剃光头发。其双重保护系统 - 滑行涂层与圆形尖端相结合 - 使剃须更容易舒适。其剃须技术具有快速移动的切割器(每分钟12,000 x),因此即使在更长的头发上也是有效的。
Philips Oneblade拥有一项革命性的技术,设计用于面部美容。它可以剃光头发。其双重保护系统 - 滑行涂层与圆形尖端相结合 - 使剃须更容易舒适。其剃须技术具有快速移动的切割器(每分钟12000倍),因此即使在更长的头发上也是有效的。