糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
抽象恶性肿瘤是由癌细胞和肿瘤微环境细胞组成的复杂结构。在这种复杂的结构中,细胞交叉和相互作用,从而共同促进癌症的发展和转移。最近,基于免疫调节分子的癌症免疫疗法极大地提高了固体癌症的治疗功效,从而使某些患者能够实现持续的反应或治愈。然而,由于药物抗性和低反应率,针对可用靶标的PD-1/PD-L1或CTLA-4的免疫疗法的益处有限。尽管已经提出了联合疗法来提高反应率,但仍观察到严重的不良反应。因此,必须确定替代免疫检查点。Siglecs是近年来发现的免疫调节受体(称为Glyco-免疫检查点)的家族。本综述系统地描述了SigLecs的分子特征,并讨论了包括合成配体,单克隆抗体抑制剂和嵌合抗原受体T(CAR CAR-T)细胞在内的地区的最新进展,重点侧重于阻止siALLAID GLYCANSED GLYCAN CAMLAID GLYCAN-GLYCAN-SIGLEC轴的可用策略。靶向Glyco-Mmune检查点可以扩大免疫检查点的范围,并为新药物开发提供多种选择。关键字siglec;脱糖的聚糖; Glyco-immune检查点;高亲和力siglec-rigands;抗Siglec抗体
人类血清和血浆的核磁共振 (NMR) 光谱除了代谢物和脂蛋白外,还显示两种特征信号 GlycA 和 B,它们来自急性期蛋白表面聚糖的乙酰基,是炎症过程的良好标志物。在这里,我们报告了在人类血清中观察到的糖蛋白聚糖 NMR 信号的全面分配,结果显示 GlycA 和 GlycB 信号分别来自 N -聚糖的 Neu5Ac 和 GlcNAc 部分。常规测定的急性期糖蛋白浓度与 NMR 光谱中的独特特征有很好的相关性(R 2 高达 0.9422,p 值 <0.001),可以在 10 – 20 分钟的采集时间内同时定量几种急性期炎症蛋白(图 1)。[1] 这在 COVID-19 和心源性休克患者的血清样本中得到了体现,与健康对照组相比,几种急性期蛋白发生了显着变化。
附着在蛋白质,脂质或形成长而复杂的链上,糖是在自然界中最通用的翻译后修饰,并围绕所有人类细胞。独特的聚糖结构由免疫系统监测,并将自我与非自身和健康与恶性细胞区分开。异常的糖基化,称为肿瘤相关的碳水化合物抗原(TACAS),是癌症的标志,与癌症生物学的各个方面相关。因此,塔卡斯(Tacas)代表了用于癌症诊断和治疗的单克隆抗体的有吸引力靶标。然而,由于较厚且密集的糖脂以及肿瘤微环境,常规抗体通常遭受限制的访问和体内有效性。为了克服这个问题,许多小型抗体片段已经出现,比全长的效率表现出相似的亲和力,其效率更高。在这里,我们回顾了针对肿瘤细胞上特定聚糖的小抗体片段,并强调了它们比常规抗体的优势。
gibsongroup是一个积极的研究环境,预计成功的候选人将为团体研究文化做出贡献,重点是团队合作。工作的总体目的该项目将涉及自动化的聚糖组装,以合成和表征基于多糖的新型生物材料。候选人还将探讨如何应用这些材料来应对可持续性和生物技术方面的关键挑战,并必须愿意学习新的生物物理特征方法。关键职责包括制定强大的合成协议,执行先进的材料特征,帮助PI开发新的资金应用程序并与多学科团队合作。PDRA将直接向Matthew I. Gibson教授报告。强大的研究和出版记录是必不可少的,并且能够证明具有领导和完成(包括出版)项目的能力。您必须具有出色的沟通,演示,人际关系和团队合作能力。关键职责,责任或职责范围的范围将包括:•进行个人和协作研究项目。
糖生物学中的跨性识别是生物学上常规蛋白质与生物聚糖的对映异构体之间的相互作用(例如,L蛋白与L-己糖结合的L蛋白质与L-Hexoses结合)与生命王国的生物体中的相互作用。通过对称性,它还描述了手性镜面蛋白与正常D-聚糖的相互作用。跨性识别的知识对于理解现有生命形式与人造镜像形式的潜在相互作用至关重要,但是目前已知的蛋白质 - 聚糖相互作用规则不足。为了构建一种学习这种相互作用的方法,我们构建了机器学习模型,以预测代表原子图的蛋白质和聚糖之间的结合强度,而不是单糖。基于聚糖的基于原子Q -gram和Morgan指纹(MF)表示,可以训练ML模型,以预测所有天然聚糖的聚糖,糖化化合物和对映异构体的凝集素结合特性。对此训练的关键是将不同的数据合并 - 某些数据与来自Glycan微阵列的相对荧光单元(RFU),而来自ITC的K d值的其他数据则是在特定的凝集素浓度下使用通用的“分数结合”参数F。MCNET是一个完全连接的神经网络体系结构,将MF和浓度(C)作为输入,并返回147个凝集素的F。MCNET的性能与Glynet模型相媲美,并且通过代理与其他最新的最先进的模型来预测蛋白质 - 聚糖相互作用的强度。MCNET有效预测了糖化化合物与甘叶蛋白1、3和7的结合。糖化化合物)。从基于单糖的描述中脱离,使MCNET可以预测跨性识别。我们使用液态聚糖阵列来验证一些预测,例如L-甘露糖与D-Mannose结合凝集素,纯化的CONA和DC-SIGN显示在细胞上的DC-SIGN以及L-MAN与半乳糖糖结合的凝集素的弱结合。MCNET的原子级输入使得从生活和非聚糖结构的所有王国中的各种聚糖中结合蛋白质 - 聚糖数据是可能的(例如,通用分数结合参数使得可以统一不同的定量观测值(K D / IC 50,RFU,色谱保留时间等)。我们认为,这种方法将有助于从不同的糖生物学数据集中合并知识,并预测与当前ML模型无法获得的不常见/不自然的聚糖的蛋白质相互作用。
网格蛋白介导的途径将它们运送到溶酶体降解。多价性原理自 20 世纪 70 年代以来一直受到重视,当时 Hornick 和 Karush 18 和 Ehrlich 19 通过亲和力和特异性原理阐明了多价性在抗体对蛋白质的亲和力和细胞间相互作用中的重要性。然而,自从 Lee 和同事在非天然多价糖复合物的合成和应用方面取得开创性进展以来,20-22 多价糖科学领域迅速发展,以利用 Lee 和 Lee 所谓的“簇糖苷效应”。 23–25 虽然许多关于多价糖复合物的研究都集中在发现蛋白质-糖相互作用的抑制剂上,但 12,26 它们在细胞靶向方面的应用可以追溯到 Lee 等人对肝细胞通过去唾液酸糖蛋白受体结合和内化糖苷簇的早期研究。 21 这些开创性的研究为开发合成多价碳水化合物的首个临床应用奠定了基础。 2019 年,美国食品药品监督管理局 (FDA) 批准了 Givosiran,27
在亚临床动脉粥样硬化和代谢性疾病中,已经报道了使用改变的免疫球蛋白G(IgG)N-聚糖模式作为炎症公制,这两者都是心血管健康的重要危险因素。然而,心血管疾病(CVD)的风险地层(CVDS)的IgG N-糖基化利润率的可用能力仍然未知。这项研究旨在开发一种心血管老化指数,用于使用IgG N-聚糖跟踪心血管风险。这项横断面调查招募了1465名来自Busselton健康和衰老研究的40-70岁的人。我们逐步选择了使用机器学习中的特征选择方法(递归功能消除和惩罚性回归算法)的变化N-聚糖的交汇处,并开发了IgG N-糖基化心血管年龄(GlyCage)索引,以反射来自日历年龄的偏差,从而使偏差归因于可产生的偏差。与糖基指数的最强贡献者是偶联糖基化的N-聚糖,其成分为N-乙酰基葡萄糖胺(GlCNAC)(GllcNAC)(Glycan Peak 6(GP6),FA2B,FA2B,)和digalactosy complactosy lated N-糖,含有双分裂的glcnac(glcnac)GLCNAC(GP13)(GP13,A2BG2)。A one-unit increase of GlyCage was significantly associated with a higher Framingham ten-year cardiovascular risk (odds ratio (OR), 1.09; 95% confidence interval (95% CI): 1.05–1.13) and probability of CVDs (OR, 1.07; 95% CI: 1.01–1.13) independent of calendar age.患有过度糖的人(超过3个日历年龄> 3岁)的心血管风险和CVD的概率增加,调整后的ORS分别为2.22(95%CI:1.41–3.53)和2.71(95%CI:1.25-6.41)。2022作者。曲线(AUC)区分高心脏风险的区域(AUC)值为0.73和0.65,对于日历年龄,在日历年龄为0.65和0.63。因此,本研究中开发的糖指数可用于使用IgG N-糖基化pro纤维来跟踪心血管健康。糖基与日历年龄之间的距离独立表明心血管风险,表明IgG N-糖基化在CVD的发病机理中起作用。观察到的关联的概括和高糖指数的预测能力需要其他人群的外部和纵向验证。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
聚糖在细胞信号传导和功能中起关键作用。与蛋白质不同,聚糖结构不是从基因模板中,而是许多基因的一致活性,使它们在历史上挑战研究。在这里,我们提出了一种利用合并的CRISPR屏幕和凝集素微阵列来揭示和表征细胞表面糖基化调节剂的策略。我们应用了这种方法来研究高甘露糖糖的调节 - 所有天冬酰胺(n)连接 - 聚糖的起始结构。我们使用CRISPR屏幕揭示了控制高甘露糖表面水平的基因的扩展网络,然后是凝集素微阵列,以完全测量精选调节剂对全球糖基化的复杂作用。通过此,我们阐明了两个新型的高甘露糖调节剂-TM9SF3和CCC复合物如何通过调节高尔基形态和功能来控制复合物N-糖基化。值得注意的是,这种方法使我们能够深入审问高尔基功能,并揭示与高尔基形态的类似破坏可以导致巨大不同的糖基化结果。总的来说,这项工作展示了一种可系统地剖析糖基化的调节网络的可推广方法。
橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。