AMC1 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 60 AMC2 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 AMC3 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 GM1 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM2 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM3 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 62
AMC1 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 60 AMC2 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 AMC3 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 GM1 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM2 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM3 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 62
这些成功促使日本越来越多人认识到基因疗法是一种可行的治疗策略。日本医疗研究和开发机构 (AMED) 已批准资助从 2020 年开始的针对神经系统疾病的临床试验,包括帕金森病、ALS、GM2 神经节苷脂沉积症和脊髓小脑共济失调 1 型。
描述/背景GM2神经节蛋白是一组溶酶体脂质储存障碍,其中包括Tay-Sachs病(TSD)。GM2神经节苷脂是在神经细胞膜表面发现的大脂质分子。它们不断合成和退化。溶酶体是细胞内的细胞器,其中包含大约50种不同的酶,这些酶与有毒物质消化和清除废物的消化有关。这样一种酶是β-己糖胺酶A(β-己糖胺酶A或Hex A),这是导致GM2神经节蛋白底物的正常分解代谢。当AX A缺乏或缺乏时,底物会在细胞中积聚导致细胞死亡的细胞,最著名的是大脑和脊髓中的细胞。Hexa基因提供了制作六角亚基的指示,而Hexa基因中的变体导致Hex A的生产不足A。TSD疾病的严重程度与人体产生的十六进制量直接相关。tay-sachs已被发现有几种形式:婴儿(或经典),少年和成人(或晚发)。在一个家庭中只有一种形式的Tay-Sachs发生。婴儿tay-sachs:婴儿形式的特征是几乎完全缺乏十六进制的酶活性,并且是最严重的形式。婴儿出生时可能不受影响;但是,症状出现在生命的头几个月中。症状包括失去学习技能(回归),癫痫发作以及肌肉和心理功能的丧失。经典的症状是从脉络膜暴露中发现了眼球的樱桃红点。以这种形式的儿童在幼儿时期无法生存。少年tay-sachs:这种形式具有一系列严重性,症状出现在童年时期的任何时候,但通常在2至5岁之间。症状包括行为问题,逐渐丧失技能,频繁的呼吸道感染和癫痫发作。具有这种形式的孩子通常无法在十几岁的时候生存。成人Tay-Sachs:这是最不严重的形式,在童年后期出现症状。症状可能包括笨拙,肌肉无力,精神疾病和
AMC1 SPA.EFB.100(b) 电子飞行包(EFB)的使用——运行批准 ........................................ 104 AMC2 SPA.EFB.100(b) 电子飞行包(EFB)的使用——运行批准 ........................................ 105 AMC3 SPA.EFB.100(b) 电子飞行包(EFB)的使用 ........................................................ 106 AMC4 SPA.EFB.100(b) 电子飞行包(EFB)的使用 ........................................................ 107 GM1 SPA.EFB.100(b) 电子飞行包(EFB)的使用——运行批准 ........................................ 107 GM2 SPA.EFB.100(b) 电子飞行包(EFB)的使用——运行批准 ........................................ 109 AMC1 SPA.EFB.100(b)(1) 电子飞行包(EFB)的使用——运行批准 ........................................ 109 AMC1 SPA.EFB.100(b)(2) 电子飞行包(EFB)的使用——运行批准...... 110 AMC1 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用——运行批准...... 112 AMC2 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用——运行批准...... 113 AMC3 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用——运行批准...... 114 AMC4 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用——运行批准...... 116 AMC5 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用——运行批准...... 119 AMC6 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用— 运行批准.... 122 AMC7 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用 — 运行批准...... 123 AMC8 SPA.EFB.100(b)(3) 电子飞行包(EFB)的使用 — 运行
基因编辑技术有很多种,其中包括 ZFN(锌指核酸酶)、TALEN(转录激活因子样效应核酸酶)以及最广为人知的 CRISPR-Cas9(成簇的规则间隔短回文重复序列,C RISPR 相关蛋白 9)(PMID:27908936)。CRISPR-Cas9 基因组编辑系统的发现被视为科学上的一项重要突破,首席研究员 Jennifer Doudna 博士和 Emmanuelle Charpentier 博士因此获得了 2020 年诺贝尔化学奖(https://www.nobelprize.org/uploads/2020/10/popular-chemistryprize2020.pdf)。 “编辑”一个基因来改变其功能为治疗遗传疾病带来了巨大的希望,特别是那些无法彻底治愈的疾病,例如 GM2 神经节苷脂沉积症、GM1 神经节苷脂沉积症和卡纳万病。
AMC1 UAS.LUC.030(2) 安全管理系统.............................................................. 340 GM1 UAS.LUC.030(2)(a) 安全管理系统.............................................................. 341 AMC1 UAS.LUC.030(2)(c) 安全管理系统.............................................................. 341 GM1 UAS.LUC.030(2)(c) 安全管理系统.............................................................. 342 GM1 UAS.LUC.030(2)(d) 安全管理系统.............................................................. 342 GM2 UAS.LUC.030(2)(d) 安全管理系统.............................................................. 343 GM3 UAS.LUC.030(2)(d) 安全管理系统.............................................................. 343 AMC1 UAS.LUC.030(2)(g) 安全管理系统.............................................................. 343 GM1 UAS.LUC.030(2)(g)(i) 安全管理系统........................................... 344 AMC1 UAS.LUC.030(2)(g)(iii) 安全管理系统 .............................................. 344 GM1 UAS.LUC.030(2)(g)(iv) 安全管理系统 .............................................. 344 AMC1 UAS.LUC.030(2)(g)(v) 安全管理系统 .............................................. 345 GM1 UAS.LUC.030(2)(g)(v) 安全管理系统 .............................................. 346 AMC1 UAS.LUC.030(2)(g)(vi) 安全管理系统 .............................................. 346 GM1 UAS.LUC.030(2)(g)(vi) 安全管理系统 .............................................. 347 GM1 UAS.LUC.030(2)(g)(vii) 安全管理系统 .............................................. 347 GM1 UAS.LUC.030(2)(g)(viii) 安全管理系统 .............................................. 348 AMC1 UAS.LUC.030(2)(g)(ix) 安全管理系统 ...................................................... 349
IIIA型粘多糖化病(MPS IIIA)患者缺乏溶酶体酶磺酰酶(SGSH),这对于硫酸乙酰肝素(HS)的降解而言是可重点的。尚未依赖的HS的积累会导致严重的进行性神经变性,目前尚无治疗。在MPS IIIA的小鼠模型中评估了载体腺相关病毒(AAV)RH.10-CAG-SGSH(LYS-SAF302)纠正疾病病理的能力。lys-SAF302以三种不同剂量(8.6e+08、4.1e+10和9.0e+10+10个载体基因组[VG]/动物)注射到尾状pe虫/纹状体/纹状体和thalamus的三种不同剂量(8.6e+08、4.1e+10和9.0e+10和9.0e+10载体基因组[VG]/动物)中施用。lys-SAF302能够依赖于纠正剂量或显着降低HS储存,GM2和GM3神经节蛋白的继发性积累,泛素反应性轴突球体,溶酶体膨胀,溶酶体膨胀以及毒液膨胀在12周和25周后的神经毒素流量。要研究大动物大脑中的SGSH分布,将LYS-SAF302注入了狗的皮层白质(1.0e+12或2.0e+12 Vg/Animal)和cynomolgus猴子(7.2e+11 Vg/an-imal)。在78%(注射后4周)中检测到78%的SGSH酶活性至少高于内源水平的20%(狗)的增加至少高于内源性水平。综上所述,这些数据验证了脑室内AAV的给药,作为实现MPS IIIA中疾病疾病的广泛酶分布和纠正的有前途的方法。
威廉·阿尔巴诺 (William Albano)、路易丝·鲍杜夫 (Louise Balduf)、格雷厄姆·P·约翰斯顿 (Graham P. Johnston)、丹尼尔·希恩 (Daniel Sheehan)、谢恩·麦考利 (Shane McAuley)。还有肖恩·戴维 (Sean Davey)、埃里克·托马斯 (Eric Thomas) 下士、约瑟夫·A·科兰托尼 (Joseph A. Colantoni) 上士、詹姆斯·R·贾维斯三世 (James R. Jarvis III) 中士、美国陆军中尉布赖恩·约翰斯 (Brian Johns) 和克里斯·巴特勒 (Chris Butler) 上士。还有安德鲁·格拉托 (Andrew Grato) 和阿里尔·格拉托 (Arielle Grato) 中士、陆军空降部队埃里克·塞登 (Eric Seiden) 中士。还有弗兰克·弗莱明 (Frank Fleming)、马休·古德 (Mathew Goode)、美国空军少校大卫·冈萨雷斯 (David Gonsalez)、美国海军陆战队瑞安·戴维斯 (Ryan Davis)、凯文·迈克尔·瑞安 (Kevin Michael Ryan) 中校、林赛·瑞安 (Lindsey Ryan) 少校、陆军高级军士长詹姆斯·克劳利 (James Crowley)、威廉·洛帕特卡 (William Lopatka) 和一等兵伊丽莎白·V·麦卡锡 (Elizabeth V. McCarthy) - Tang。还有下士森哈克·唐 (Senghak Tang)。 PFC Hyder Alsatlawi、美国海岸警卫队 MaƩ Bonneau、美国陆军 Faryn LiƩle、美国空军 Daniel W. Luring、二级准尉 Jesse Boyd、中士 Nicole L. Jenkins、上尉 Bill Lord、中尉 FC Sarah Lord、少校 Anthony LaCourse 和 GM2 Paul J. Bergman。还有美国海军陆战队 Eric Kelly、美国空军中校 Mark Barrera、特种兵 Ryan Fallows、美国陆军二等兵 Mitchell Connolly、中士 Jeffery Kielpinsk。以及 Steven Tyler Morse、Jusn Rose、TSGT - 美国空军 Steven Freitas、海军预备役参议员 Michael Rush、空军飞行员中尉 Kevin Winslow、美国特种兵 Thomas C. Boyle, Jr.、SSGT Dane Pare、美国海军陆战队Ryan H. Mckay,美国海军陆战队下士 Timothy Shallow, Jr.,美国空军少校 Sarah E. Kelter,美国海军陆战队中士 Derek BoƟ,美国海军陆战队下士 Tyler Geary,KC Zerfoss,美国海军陆战队下士 Andrew Santos、Catherine Balduf、Patrick J. Mitchell,技术准将 Kevin O'Hara,美国空军、美国海军陆战队列兵 George Eliopoulus,美国海军 Casey D. Carbone,一等兵 John O'Neil,第 75 游骑兵团中士Peter Cannizzaro、Ryan McGrath 美国空军、美国陆军国民警卫队、一等空军兵 MaƩhew Timmons、CPO Jacob Patriarca、美国海军、少校 William Buckley III 美国陆军、下士 Alyssa Buckley 美国海军陆战队、E5 SSG Brandon Miller、高级空军兵、美国海军陆战队 PFC Anthony Votano、美国海军中尉 Joseph Gallagher、美国海军 E4 Aidan Paul Duuffy、陆军上尉 Rachel Miller、E4 SPC Brian C. Booth、美国陆军中士 James Rehill、美国陆军、James Leahy、美国海军陆战队、美国海军陆战队中士 Jonathan L. Storrs、美国陆军 Trevor LiƩle、美国海军 Patrick DeMichele、空军兵 Gregory Staffird Eimers、中士 Adam Cannizzaro、美国陆军 Sean Creavin、少尉 Samuel Belanger、美国空军。
