MDA 正在开发一种新型、性能更强大的 GMD 拦截器,称为下一代拦截器 (NGI),以应对不断演变的威胁并增强并最终取代老化的地基拦截器。据美国北方司令部称,NGI 是国土导弹防御的优先事项,需要在 2028 财年或更早开始初步部署。3 国会还指出,国防部需要确保 NGI 得到严格的技术和采购监督,并在项目早期降低风险。4 国防部对此作出了部分回应,对该项目进行了独立的技术风险和成本评估。例如,国防部成本评估和项目评估主任 (CAPE) 估计,设计、开发、生产、运行和维持 20 个生产单元 NGI 和额外测试件的初始能力的总成本将超过 170 亿美元。NGI 也是 MDA 正在开发和管理的第一个项目
A2/AD 反介入/区域拒止 AMD 防空反导 AMRAAM 先进中程空对空导弹 ARCIC 陆军能力整合中心 ATACMS 陆军战术导弹系统 BMDS 弹道导弹防御系统 C2 指挥与控制 C2BMC 指挥与控制、战斗管理和通信 CEC 协同作战能力 DOTMLPF 条令、组织、培训、物资、领导与教育、人员和设施 DPICC 徒步爱国者信息协调中心 ECS 交战控制站 ELES 增强型发射电子系统 ENBAD 增程非弹道防空 ESSM 改进型海麻雀导弹 FCS 未来作战系统 GBI 地基拦截器 GEM 制导增强导弹 GMD 地基中段防御 HAWK 全程制导杀手 HIMARS 高机动火炮火箭系统 IAMD 综合防空反导 IBCS 综合防空反导作战指挥系统ICBM 洲际弹道导弹 ICC 信息协调中心 IFPC 间接火力防护能力
been granted an extension to the end of 2025, to complete important activities of its four working groups (WG) that were delayed during the pandemic and for them to collectively write a synthesis review paper: - WG1 on Coordinated GCM experiments (CoEx) is actively working on experiments based on 5 models (CESM2, NorCPM, SINTEX-F2, MIROC6, ACCESS-CM2) that are planned to be completed and分析于2024年,输出将在ESGF上发布。实验设计的论文正在为GMD期刊做准备。在新奥尔良的2024年海洋科学举行了一个联排屋活动,以告知社区实验的地位。- WG2关于概念和中间复杂性模型和统计方法的实验(理想化的GCM)和代码(线性逆模型,跨模型,跨囊蛋白补偿振荡器)可供社区提供。- WG3关于观察结果正在撰写有关Pantropical观察系统的评论文章,并计划就此主题参与OOPC。-WG4古代代理人将与WG3合作在其审查文章中合作,其中包括有关海水δ18O观察的部分,与我们的前Clivar Water同位素工作组进行了协调。
我叫威廉·巴特·劳埃德(William Bart Lloyd)。我住在纽波特 - 是一名退休的负担得起的住房律师。尽管我的大部分职业生涯都在波士顿度过,但我还是罗德岛州住房的公司顾问5年。我正在作证支持H7285。该法案要求罗德岛公用事业公司在罗德岛州至少确定至少三个和最多五个飞行员地热能项目,此后继续实施这些项目。开发地热能是实现气候法案的目标和任务的重要组成部分。随着我们几乎使我们的所有能源电气化(并拥有无碳源产生的所有电力) - 该策略的后果之一是,对我们电网的需求将大大增加。我们将需要提供比目前更加干净的电力,而且我们还需要采用电气化解决方案,这些解决方案使用较少的电力来满足我们的能源需求。地热能可能是解决该问题的重要组成部分。地热能够与最可能的电气化替代方案 - 空气源热泵提供的热量明显少得多。应用经济学研究所的2021年研究得出结论,地热热泵仅需要60-70%的电力作为空气源热泵才能产生相同数量的热量。- 地热,因为需要摊销其更高的资本成本,而不是空气源热泵 - 最适合茂密的街区和较大的建筑物。H7285要求实用程序开始移动这可能永远不是埃克塞特和里士满等农村地区的供暖 - 电源答案 - 但在纽波特(以及普罗维登斯和其他密集社区)的许多地方,这是有意义的。好消息是,我们解决了问题的更大部分,并通过使这些用户的地热来获得最大的收益。该法案做了许多其他美好的事物,包括与劳工有关,以及与环境正义有关的事情 - 但最重要的是,它要求公共事业开始在建立居民的道路上取得进展,我们确实需要降低。顺便说一句 - 纽波特在北侧有近50英亩的土地,在接下来的十年中已经成熟了,并且可以想象,这对于该法案所考虑的那种飞行员来说是完美的。当然 - 纽波特(Newport)大部分地区(包括我居住的地方)相对茂密的社区也使人们更容易考虑相对廉价地改造GMD的GMD热量热量到现有社区。我们知道,从天然气作为供暖和烹饪来源的过渡是一项艰巨的任务 - 但也是必要的事业。
臭氧污染可能将灌溉的好处限制为印度的小麦生产力,在印度Gabriella Everett,ØivindHodnebrog,Madhoolika Agrawal,Durgesh Singh Yadav,Connie O'Neill,Chubamenla Jamir,Jo Cook,Pritha Pande,Pritha Pande,Pritha Pande和Lisa Emberson Egusphere [Preppred epprint] https://doi.org/10.5194/egusphere-2024-3371讨论于2024年11月15日开始讨论,讨论于2025年1月24日结束,该评论是由Toar-II社区特殊问题的Toar Scientific Socordinator Owen Cooper撰写的。i或TOAR-II指导委员会的成员,将对提交给Toar-II社区特刊的所有论文发表评论,这是一个杂志间专刊,可容纳六本哥白尼期刊的提交:ACP(主要期刊),AMT,AMT,GMD,GMD,ESSD,ASSD,ASCMO和BG。这些评论的主要目的是确定TOAR-II提交的任何差异,并让作者团队有时间解决差异。评论中可能包括其他评论。O. Cooper和Toar指导委员会的成员可能会对提交给Toar-II社区特刊的论文发表公开评论,但他们不参与接受或拒绝发表论文的决定,该论文完全由期刊的社论团队处理。有关TOAR-II指南的评论:Toar-II制作了两个指导文件,以帮助作者制定手稿,以便可以在将为Toar-II社区特殊问题上编写的广泛研究中进行一致比较结果。范围包括报告趋势的方法,对常用技术的优势和劣势的讨论以及不确定性交流的校准语言。Both guidance documents can be found on the TOAR-II webpage: https://igacproject.org/activities/TOAR/TOAR-II The TOAR-II Community Special Issue Guidelines : In the spirit of collaboration and to allow TOAR-II findings to be directly comparable across publications, the TOAR-II Steering Committee has issued this set of guidelines regarding style, units, plotting scales,区域和对流层比较以及对流层顶定义。TOAR-II的统计分析建议:本指南的目的是提供有关最佳统计实践的建议,并确保在TOAR出版物中持续统计分析和相关的不确定性进行持续的沟通。TOAR-II统计指南的表3提供了用于描述趋势和不确定性的校准语言,类似于IPCC的方法,IPCC的方法允许讨论趋势,而不必使用有问题的表达方式“统计学意义”。
克劳斯-罗伯特·穆勒是柏林工业大学的计算机科学教授,也是柏林学习和数据基础研究所 (BIFOLD) 的联席主任。他于 1984 年至 1989 年在卡尔斯鲁厄学习物理学,并于 1992 年在卡尔斯鲁厄工业大学获得计算机科学博士学位。在柏林 GMD FIRST 完成博士后工作后,他于 1994 年至 1995 年在东京大学担任研究员。1995 年,他在 GMD-FIRST(后来的弗劳恩霍夫 FIRST)创立了智能数据分析小组,并担任该小组的负责人,直至 2008 年。1999 年至 2006 年,他担任波茨坦大学教授。自 2012 年起,他担任首尔高丽大学的杰出教授。 2020/2021 年,他在谷歌大脑担任首席科学家,度过了休假。除其他外,他还获得了奥林巴斯模式识别奖(1999 年)、SEL 阿尔卡特通信奖(2006 年)、柏林市长颁发的柏林科学奖(2014 年)、沃达丰创新奖(2017 年)、赫克托科学奖(2024 年)、模式识别最佳论文奖(2020 年)、数字信号处理最佳论文奖(2022 年)。2012 年,他当选为德国国家科学院利奥波尔迪纳分校院士,2017 年当选为柏林勃兰登堡学院院士
12 NOAA 2019 年 12 月莫纳罗亚二氧化碳月平均值 = 411.76 ppm。https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html。访问日期:2020 年 1 月 23 日。13 Raven 等人,2005 年。大气二氧化碳增加导致的海洋酸化。14 Alin 等人,2016 年。在:PSEMP 海洋水域工作组。2016 年。普吉特海湾海洋水域:2015 年概览。www.psp.wa.gov/PSEMP/PSmarinewatersoverview.php。15 华盛顿州海洋酸化蓝丝带小组。2012 年。海洋酸化:从知识到行动:华盛顿州的战略应对。16 Mauger 等人。 2015。知识状况:普吉特海湾的气候变化。潮汐数据:https://tidesandcurrents.noaa.gov/sltrends/ sltrends_station.shtml?id=9447130。请注意,自 1900 年以来,NOAA 西雅图潮汐仪附近的陆地已下沉约 3.5 英寸(Miller 等人,2018 年)。17 月,等人,2018 年:西北部。在美国的影响、风险和适应:第四次国家气候评估,第二卷中。美国全球变化研究计划。18 月,等人,2018 年:西北部。在美国的影响、风险和适应:第四次国家气候评估,第二卷中。美国全球变化研究计划。19 Snover 等人,2013 年。华盛顿州的气候变化影响和适应:决策者技术摘要。知识状况报告。 20 Snover 等人,2019 年。《刻不容缓》。政府间气候变化专门委员会关于全球变暖 1.5°C 及其对华盛顿州的影响的特别报告》。
* 通讯作者。leonid@mit.edu,zechner@mpi-cbg.de,ashansen@mit.edu。作者贡献:ASH 构思并启动了该项目。HBB、MG、SGH、LM、CZ、ASH 设计了该项目。ASH 进行了基因组编辑并生成了细胞系。GMD 克隆了质粒。MG、AJ、CC 和 ASH 表征并验证了细胞系。THSH 进行了 Micro-C。CC 进行了 ChIP-Seq。MG、AJ 和 HBB 使用来自 ASH 的输入优化了成像实验。MG 和 AJ 收集了图像数据。MG 和 AJ 进行了对照实验并表征了 AID 细胞系。HBB 开发了图像处理管道 CNN,并使用来自 ASH、SGH、MG 和 AJ 的输入分析了图像数据。HBB 使用来自 SGH 和 LM 的输入进行了聚合物模拟。MG、AJ、HBB 和 ASH 注释了轨迹数据。 SGH 和 CZ 在 HBB、LM 和 ASH 的帮助下设计了 BILD。SGH 开发并测试了 BILD,将 BILD 应用于轨迹数据,并在 HBB、LM、ASH 和 CZ 的帮助下开发了 MSD 分析。HBB 和 SGH 分析了聚合物模拟。ASH、LM 和 CZ 负责监督该项目。HBB、MG、SGH、AJ 和 ASH 起草了手稿和图表。所有作者都编辑了手稿和图表。+ 现地址:Illumina Inc.;美国加利福尼亚州圣地亚哥 92122 † 这些作者对这项工作的贡献相同,可以先列出自己的名字。
当一颗心真的活着时”:乔治·麦克唐纳(George MacDonald)和预言的想象力乔治·麦克唐纳(George MacDonald)-1824-1905撰写的约翰·希思(John Heath)刺痛时,当盆地中的水泛滥成灾,成为一条穿过木材的溪流,当地毯上的花朵变成了真正的繁华,有些人会在一个人身上散发出来的人,有些人会在一个人的身上,有些人会逐渐养成鸟类,并且在一个危险的过程中,您会在一个友好的氛围中,当您的境地变得越来越危险。直到午夜,他们戴着面具的舞者,现在被谴责为毫无疑问,当图书馆中的一本书在我们的世界中;炮塔在北风的后面;这首诗是约翰·希思·斯图布斯(John Heath-Stubbs)给乔治·麦克唐纳学会(George MacDonald Society)的礼物,诗人在1991年的年度股东大会上读了。切斯特顿(Chesterton)在麦克唐纳(Macdonald)上(从他的GMD传记介绍),但在某种相当特殊的意义上,我可以真正证明一本对我整个生存有所不同的书,这帮助我从一开始就以某种方式以某种方式看待事物;事物的愿景甚至是真正的革命,因为宗教效忠的改变只是被加冕和确认。当我说这就像生活时,我的意思是。我读过的所有故事,包括同一小说家的所有小说,它仍然是最真实,最现实,最现实的意义上最喜欢的生活。它被称为公主和妖精,由本书的主题乔治·麦克唐纳(George MacDonald)作者。它描述了一个住在山区城堡中的公主,这是由地下魔鬼永久破坏的,有时是通过地下室升起的。她爬上城堡楼梯到托儿所或其他房间。但是,楼梯一次又一次地导致了通常的着陆点,而是到她从未见过的新房间,通常找不到。在这里,一个好的曾祖母,是一种童话教母,一直在旋转和说话
Kenneth M. Anderson;科罗拉多大学(美国) Helen Ashman;诺丁汉大学(英国) V. Balasubramanian;E-Papyrus 公司(美国) Joergen Bang;奥胡斯大学(丹麦) John Boot;摩托罗拉(美国) Peter Brusilovsky;卡内基梅隆大学(美国) John Buford;GTE 实验室(美国) Licia Calvi;安特卫普大学(比利时) Leslie Carr;南安普顿大学(英国) Betty Collis;特温特大学(荷兰) Gordon Davies;开放大学(英国) Paul De Bra;埃因霍温理工大学(荷兰) Roger Debreceny;南洋理工大学(新加坡) Serge Demeyer;伯尔尼大学(瑞士) Andreas Dieberger;埃默里大学 / ITD(美国) Philip Doty;德克萨斯大学奥斯汀分校(美国) David Durand;波士顿大学(美国) Erik Duval;天主教鲁汶大学(比利时) John Eklund;Access Australia 合作多媒体中心(澳大利亚) Anton Eliens;阿姆斯特丹自由大学(荷兰) Allan Ellis;南十字星大学(澳大利亚) Dieter Fellner;布伦瑞克理工大学(德国) Josef Fink;德国国家信息技术研究中心(德国) Richard Furuta;德克萨斯 A&M 大学(美国) Franca Garzotto;米兰理工大学(意大利) Peter Gloor,普华永道(瑞士) Gene Golovchinsky;FX Palo Alto 实验室公司(美国) Kaj Gronbmk;奥胡斯大学(丹麦) Nuno Guimaraes;大学里斯本(葡萄牙)Joerg Haake; GMD-IPSI(德国)Lynda Hardman; CWI(荷兰)Joachim Paul Hasebrook;银行学院(德国)Colin Hensley;丰田汽车欧洲(比利时)David