根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
摘要:军事指挥和控制系统必须处理各种不同的传感器和来源。除了传统信息源(如 IFF、战术数据链和 ESM 传感器)之外,AIS、蓝军跟踪和 GMTI 雷达等其他来源也成为目标识别和分类的重要来源。正确识别是防止误伤和平民附带损害以及完成态势感知的重要先决条件。本文概述了我们扩展贝叶斯识别过程的解决方案,以便为海军以及空中和地面目标建立战术图景。对于一些传感器和重要的识别源,如自动识别系统 (AIS)、自动目标识别 (ATR) 和 GMTI 雷达,我们将详细介绍解决方案。
o 翼展:18 米 o 长度:8.50 米 o 重量:1.2 吨 续航时间:14 小时 SAR/GMTI 雷达:探测移动目标 EO/IR/激光:识别
PicoSAR 提供高分辨率合成孔径雷达 (SAR) 成像和地面移动目标指示 (GMTI) 功能,使新旧平台能够轻松获得真正的全天候地面测绘和监视能力。其体积小、重量轻、功耗低,即使在有效载荷有限的平台上也可以与电光/红外传感器并行安装。
来源:报告的作者。F-35中队的一个准备例子,该中队使用无机KC-46加油油轮实现目标,并与无机能力合作,包括RQ-58无人驾驶的车辆,这些车辆可挤压敌人的空气防御和低地球轨道(Leo)(LEO)电子智能(ELINT)电子智能(ELINT)群集开发机构(SPACENTERATION ADICANTION)(SDA),以找到目标。首字母缩写:ELINT:电子智能,SAR:合成孔径雷达,GMTI:地面移动目标指示器,SDB:小直径炸弹,EOTS,EOTS:电光靶向系统,AEA,AEA:空中电气电磁攻击,PS =成功的概率。
NRO 与太空军合作发射 SILENTBARKER/NROL-107 任务 SIILENTBARKER 是 NRO 使用联合发射联盟 Atlas V 火箭进行的最后一次发射 弗吉尼亚州尚蒂伊 — 美国国家侦察局与美国太空军 (USSF) 太空系统司令部、太空发射 Delta 45 和联合发射联盟合作,于今天美国东部时间上午 8:47 从卡纳维拉尔角太空军站的 41 号太空发射台成功发射了 SILENTBARKER/NROL-107 任务。SILENTBARKER 是 NRO 和 USSF 联合进行的太空领域意识 (SDA) 任务,旨在满足国防部和情报界的太空保护需求。NRO 主任 Chris Scolese 博士表示:“SILENTBARKER 是 NRO 与美国太空军之间牢固关系的又一例证,也是我们为推进美国太空利益而共同努力的又一例证。我们送入轨道的能力将有助于扩大美国的情报优势并确保我们国家的安全。” NRO 和 USSF 有着共同的利益,即加强国家的 SDA 和指示与警告能力,以便及时做出决策,保护国防部和情报部门的关键能力免受当前和预计的威胁。NRO 和 USSF 一直在 SDA 方面展开合作,以实现对太空能力的有效防御。通过合作,NRO 牵头的收购和 USSF 的支持将提高任务能力并利用成本效率的机会。此外,SILENTBARKER 通过在关键设计评审三年后发射这项任务,展示了 NRO 用来及时向用户提供能力的收购方法所固有的灵活性。“今天的发射是团队努力的结果,也是 NRO 各个角落多年创新和勤奋的结晶,”太空发射办公室主任 Eric Zarybnisky 上校说。“该项目从概念到进入轨道的速度表明了我们致力于尽快将新技术投入使用。这有助于我们领先于竞争对手,并确保我们的用户拥有最佳的太空领域意识来完成他们的工作。”对于未来的任务,NRO 和 USSF 正在携手合作,共同塑造太空地面移动目标指示器 (GMTI) 的未来,GMTI 将为作战人员提供全天候、全天候的地面和海上目标探测和跟踪服务。通过与 USSF 和其他军事部门合作,NRO 灵活的采购方法将使我们能够快速开发和采购可靠且有弹性的 GMTI 系统,并在不久的将来为作战人员提供这一关键能力。
空军研究实验室 (AFRL) TechSat 21 飞行试验演示了三颗微卫星编队飞行,作为“虚拟卫星”运行。每颗卫星上的 X 波段发射和接收有效载荷形成一个大型稀疏孔径系统。卫星编队可以配置为优化各种任务,如射频 (RF) 稀疏孔径成像、精确地理定位、地面移动目标指示 (GMTI)、单程数字地形高程数据 (DTED)、电子保护、单程干涉合成孔径雷达 (IF-SAR) 和高数据速率安全通信。与单个大型卫星相比,这种微卫星编队的优势包括无限的孔径大小和几何形状、更大的发射灵活性、更高的系统可靠性、更容易的系统升级以及低成本的大规模生产。关键研究集中在编队飞行和稀疏孔径信号处理领域,并由空军科学研究办公室 (AFOSR) 赞助和指导。TechSat 21 计划初步设计评审 (PDR) 于 2001 年 4 月举行,并结合了大量系统交易的结果,以实现轻量、高性能的卫星设计。概述了实验目标、研究进展和卫星设计。
ABES 修正预算估计提交 ACU 航空电子计算机单元 AD 现役 AEF 航空航天远征军 AEW 航空航天远征联队 AFMSS 空军任务支援系统 AFRC 空军预备队司令部 AOR 责任区 AR 减员预备队 ASIP 飞机结构完整性计划 BAI 备份库存 BLOS 超视距 C2 指挥与控制 C3 指挥、控制与通信 C3I 指挥、控制、通信与信息 CALCM 常规空射巡航导弹 (AGM-86C) CAP 战斗空中巡逻 CAS 近距空中支援 CB 测试编码 (OT&E) CC 战斗编码 CDU 控制显示单元 CEM 综合效应弹药 (CBU-87) CINC 总司令 CONOPs 作战概念 CONUS 美国本土 DCA 防御性防空 DEAD 摧毁敌方防空系统 DEC 数字发动机控制 DoD 国防部DT&E 开发测试和评估 DTU 数据传输单元 EA 电子攻击 ECM 电子对抗 EHF 极高频 EP 电子防护 EI 测试编码(DT&E) FOL 前方作战位置 FSA 未来攻击机 FYDP 未来几年国防计划 FY 财政年度 GATM 全球空中交通管理系统 GMTI 地面移动目标指示器
具有增强的生存能力。非后掠翼设置可在高空巡航期间提供最大航程。全后掠位置用于超音速飞行和高亚音速低空穿透。轰炸机的进攻性航空电子设备包括合成孔径雷达 (SAR)、地面移动目标指示器 (GMTI)、地面移动目标跟踪 (GMTT) 和地形跟踪雷达、极其精确的全球定位系统/惯性导航系统 (GPS/INS)、计算机驱动的航空电子设备和战略多普勒雷达,使机组人员能够导航、更新飞行中的目标坐标和精确轰炸。当前的防御性航空电子设备包以 ALQ-161 电子对抗 (ECM) 系统为基础,由 ALE-50 拖曳诱饵和箔条和照明弹补充,以防御雷达制导和热寻的导弹。飞机结构和雷达吸收材料将飞机的雷达信号降低到 B-52 的大约百分之一。ALE-50 可以更好地抵御射频威胁。B-1A。美国空军在 20 世纪 70 年代获得了这种新型战略轰炸机的四架原型飞行测试模型,但该项目于 1977 年取消。四架 B-1A 型号的飞行测试一直持续到 1981 年。B-1B 是里根政府于 1981 年发起的改进型。第一架生产模型于 1984 年 10 月首飞,美国空军共生产了 100 架。B-1 于 1984 年 12 月 1 日在沙漠之狐行动中首次用于支援对伊拉克的作战。