摘要:在本文中,使用HSPICE模拟了使用能源有效GNRFET技术的物联网的静态噪声边距(SNM)和SRAM在不同电压供应和静态随机访问记忆的温度下的功耗。此外,已经提出了GNRFET SRAM的各种波形的模拟。SNM存在于SRAM细胞中,这会影响SRAM细胞的读取操作的稳定性。SRAM细胞稳定性分析是一个基于静态噪声边缘(SNM)的研究。在阅读操作过程中,SRAM细胞SNM分析了各种替代方案以提高细胞稳定性。GNRFET的作用提高了其功率效率和速度,在各种物联网应用中在航空工程中起着至关重要的作用。snm是6.7@1v,平均功率为2.24@1v,snm为2.43@45 o C,平均功率为1.25@45 o C.索引条款:GNR,GNRFET,功耗,电池消耗,细胞比率,CMOS,CMOS,PURPIP RATIO,SNM,SNM),Nano-Electronic。
这项工作介绍了利用石墨烯纳米色带效果晶体管(GNRFET)的两,三位和四位模数转换器(ADC)的设计和仿真。该设计中使用的GNRFET设备的通道长度为16 nm,并以0.7 V的电源电压操作。高级设计系统(ADS)用作仿真平台。为了实现紧凑而有效的设计,实施了当前的镜像拓扑来偏置。根据功耗评估了每种ADC配置。在0.7 V电源电压内,设计表现出全范围线性输入特征。这些结果表明,这种ADC设计特别适合在高速纳米电机力学系统(NEM),内存单元和高级计算体系结构中应用。标准晶体管逻辑(STI)的延迟平均降低百分比分别为12%,ADC设计的平均百分比分别为32%。此外,功率优化的三元逻辑电路往往更快地运行。
随着技术的不断发展,由硅制成的传统晶体管使设备变得更小,更强大,正面临着局限性。为了克服这些挑战,正在探索包括FinFET和GNRFET在内的新型晶体管。finfets以3D设计,以改善对电流的控制,非常适合非常小的设备。gnrfets,由石墨烯(非常薄的材料)制成,承诺效率更好,速度更快,并且由于其独特的特性而使用的功率更少。本文通过分析它们在电路中的性能进行比较,专门针对一个称为“完整加法器”的常用电路。我们发现,尽管FinFET非常适合当前需求,但GNRFET提供了更好的能源效率,并且可能是电子产品的未来,尤其是在节省功率很重要的设备中。分析强调了如何将每种类型的晶体管应用于下一代电子产品中,帮助工程师设计更强大和节能的设备。关键字:FinFET,GNRFET,纳米级晶体管,石墨烯Nanoribbons,3D栅极结构,静电控制,短通道效应,高载流子迁移率,低功率操作,半导体技术,小型技术,小型技术,小型化,设备制造,高级CMOS,高级CMOS,下一代电子产品。1。简介