• Protection against 7 jammers • Easy to install • Plug and play integration into new or legacy platforms • Immediate availability for urgent operational needs • Compatible with all types of external GPS receivers and vehicle navigation systems, including M Code • Antenna and controller integrated as a single unit • Light weight and ultra compact size • Superior suppression performance • Embedded GNSS receiver option • Compatibility with military standards • Resilient PNT
他的研究的主要结果是对顶级驱动因素的识别和详细分析:这些是由太空服务量扩展所影响最大的要素,这将需要进一步的开发以在每个轨道状态(从Leo到Moon/Mars导航)中实现最佳的POD性能。
2020 年,尽管被疫情所标记,但就 GNSS 世界而言,仍然在全球系统和新的基础服务层面上发生了重要事件。 GSA 报告首先概述了最新发展和未来趋势。目前,全球四大系统格局已经巩固:GPS、格洛纳斯、伽利略和北斗(图1)。伽利略和北斗系统均已全面投入运行,目前中地球轨道 (MEO) 轨道上共有超过 100 颗 GNSS 卫星,世界各地的每个用户都可以看到大量卫星。但这种情况并不是一成不变的:虽然两个历史悠久的 GNSS,GPS 和 GLONASS,继续进行现代化升级(GPS 发射了第三代 GPS-III 卫星,GLONASS 部署了 GLONASS-K 卫星,也以卫星模式运行),
图 1 基于 SimGEN 的 GSS9000 GNSS 仿真系统示例 .............................................................................. 8 图 2 GSS7000 GNSS 仿真系统示例 .............................................................................................. 8 图 3 SimGEN 图形用户界面示例 ...................................................................................................... 9 图 4 场景树 ...................................................................................................................................... 10 图 5 车辆(天线)位置、运动和接收信号显示 ............................................................................. 11 图 6 卫星地面轨迹和天空图 ............................................................................................................. 11 图 7 典型的源编辑器 ................................................................................................................ 12 图 8 典型的星座编辑器 – 显示 GPS ............................................................................................. 13 图 9 卫星地面轨迹 ............................................................................................................................. 14 图 10 信号内容定义 – 显示 GPS ............................................................................................. 15 图 11 大气模型系数 ................................................................................................................ 16 图 12 定义车辆性能范围的个性编辑器 ................................................................................. 18 图13 赛道编辑器 ................................................................................................................................ 19 图 14 圆周运动编辑器 ...................................................................................................................... 20 图 15 飞机运动命令编辑器 ................................................................................................................ 21 图 16 航天器位置编辑器 ................................................................................................................ 24 图 17 地形遮挡编辑器 ...................................................................................................................... 26 图 18 天线模式编辑器 ...................................................................................................................... 27 图 19 天线杠杆臂 ............................................................................................................................. 27 图 20 Sim3D™ 环境表示 ................................................................................................................ 28 图 21 统计多径类别掩模编辑器 ............................................................................................................. 29 图 22 GTx 的功率与距离建模 ..................................................................................................... 31 图 23 快速查看选择和记录 ............................................................................................................. 32 图 24 数据流 ............................................................................................................................. 33 图 25 信号类型选择 ............................................................................................................................. 34 图 26 GBAS 消息类型 1 和 2 编辑器示例 ...................................................................................... 38
FLEX - FLORIS 仪器控制单元 INSIGHT – 地震仪电子盒 SENTINEL 1 / SES – 仪器控制模块 AEOLUS – Aladin 控制和数据管理单元 GOCE - 梯度仪全套电子设备 (3xFEEU、GAIEU 和 TCEU) IASI Ng – 机械驱动电子设备 MTG / IRS – 干涉仪控制电子设备 BEPI-COLOMBO / BELA – 模拟电子单元
地质灾害存在灾变孕育过程和致灾模式复杂、早期识别和监测预警难度大、风险防范技术支撑不足等问题,因此国家防灾减灾战略对地质灾害监测技术装备的需求很大。三维空间监测关键技术可以集成降雨、土壤含水量、倾斜、孔隙水压力、应力等滑坡因素监测技术,实现专业监测技术体系的一体化。在该技术体系中,将各监测点的多种信息处理转化为时间序列问题,利用数据融合技术,综合成一组综合信息,由点到面对滑坡进行直接监测预报[1]。滑坡监测的主要任务是结合变形监测与诱发因素监测,掌握滑坡变形破坏的特征信息,分析其动态规律,实现监测在空间、时间和尺度上的信度与效度[2]。
摘要 - 我们考虑在太空中检测GNSS接收器的SPOOFIF攻击的问题,绕地球绕着地球绕。由于空间中的接收器无法利用所谓的机会信号的存在,因此必须依靠检测信号本身中的异常并检查其测量值与计算的轨道位置的一致性。我们考虑三个不同的一致性检查:在前端的总收到的GNSS信号功率上;从每个卫星发出的信号的估计载体与噪声比(C/N 0)上;在最终计算的位置在接收器输出处。此外,我们设计了一种融合方法,该方法结合了三个检查中的软输出,以提供更可靠,更强大的检测。在现实的模拟环境中测试了所提出的技术,表明尽管位置一致性检查是迄今为止最可靠的,但来自所有这三个的软信息的正确融合允许在不同条件下进一步提高检测率。
斐济国家航空法由三级监管体系组成,包括法案、法规和标准文件;其目的是确保在适当情况下遵守和符合国际民航组织的标准和建议措施 (SARPS)。三级监管体系代表斐济的主要立法体系和具体操作规章,以满足国际民航组织安全监督系统八个关键要素中的关键要素 CE1 和 CE2。标准文件 (SD) 由斐济民航局根据 1979 年民航局法案 (CAP 174A) 第 14 (3) (b) 节的规定颁发。在适当情况下,SD 还包含有关当局可接受的标准、措施和程序的技术指导(关键要素 CE5)。尽管有上述规定,并且如果本标准文件中明确指出有此类规定,则可以考虑向管理局提交其他合规方法,前提是这些方法具有补偿因素,可以证明其安全水平相当于或优于本文规定的安全水平。因此,管理局将根据每个案例的自身优点,全面考虑替代方法对个别申请人的背景和相关性。当确定新标准、实践或程序可接受时,它们将被添加到本文件中。
由于欧盟与 PBN 相关的法规明确指出,GNSS 将在未来十年成为主要导航基础设施,因此本文件列出了各国在主要基础设施信号退化或丢失时需要考虑的问题。.(参见 2014 年欧盟法规第 716 号(PCP IR ATM #1;ATM #3)和 2018 年欧盟法规第 1048 号(PBN IR))。PBN IR 第 6 条要求 ANSP 确保在 GNSS 发生故障或启用 PBN 操作所需的其他手段发生故障时,有应急措施可用。相关的 SESAR 研究还发现,需要为 ANSP 提供有关如何开发 VOR/DME 最小操作网络 [MON] 的指导材料。本文件是在导航指导小组 (NSG) 的主持下编写的,该小组向网络运营团队 (NETOPS) 和通信、导航和监视团队 (CNS-T) 报告。
《欧洲共同体、欧洲空间局和欧洲空中航行安全组织关于欧洲对发展全球导航卫星系统(GNSS)作出贡献的协定》 ,1998 年 6 月 18 日在卢森堡签署,于 1998 年 6 月 18 日生效 《管理各国在月球和其他天体上活动的协定》(月球协定) ,由联合国大会第 34/68 号决议通过,于 1979 年 12 月 18 日在纽约签署,于 1984 年 7 月 11 日生效 《关于推广、提供和使用伽利略和 GPS 卫星导航系统和相关应用的协定》 ,2004 年 6 月 26 日在德罗莫兰城堡签署,于 2011 年 12 月 12 日生效 《关于营救宇航员、送回宇航员和归还发射到外层空间的物体的协定》(营救协定) ,由联合国大会第 2345 号决议通过(XXXII) ,1968 年 4 月 22 日签订,1968 年 12 月 3 日生效 《国际电信联盟组织法和公约》 ,1992 年 12 月 22 日签订于日内瓦,1993 年 3 月 1 日生效 《统一国际航空运输某些规则的公约》(蒙特利尔公约) ,1999 年 5 月 28 日签订于蒙特利尔,2003 年 11 月 4 日生效 《统一国际航空运输某些规则的公约》(华沙公约) ,1929 年 10 月 12 日签订于华沙,1933 年 2 月 13 日生效 《关于航空器对第三方造成损害赔偿的公约》 ,2009 年 5 月 2 日签订于蒙特利尔,尚未生效 《关于涉及航空器的非法干扰行为造成对第三方损害的赔偿公约》 ,2009 年 5 月 2 日签订于蒙特利尔2009 年,尚未生效 《关于外国航空器对地面第三方造成损害的公约》(罗马公约) ,1952 年 10 月 7 日订于罗马,1958 年 2 月 4 日生效 《国际民用航空公约》(芝加哥公约) ,1944 年 12 月 7 日订于芝加哥,1947 年 4 月 4 日生效 附件 06 航空器的运行 附件 10 航空电信 附件 13 航空器事故和事故征候调查 《关于空间物体造成损害的国际责任公约》(责任公约) ,经联合国大会第 2777 (XXVI) 号决议通过,1972 年 3 月 29 日签订,1972 年 9 月 1 日生效 《关于登记射入外层空间物体的公约》(登记公约) ,经联合国大会第 3235 (XXIX) 号决议通过,1975 年 1 月 14 日签订,1976 年 9 月 15 日生效《核能领域的第三方责任》,于 1960 年 7 月 29 日在巴黎签署,经 1964 年 1 月 28 日附加议定书和 1982 年 11 月 16 日议定书修正,于 1988 年 10 月 7 日生效,《欧洲共同体及其成员国和中华人民共和国关于民用全球导航卫星系统(GNSS) - 伽利略的合作协定》,2003年10月30日在北京签订,尚未生效 《1949年8月12日日内瓦四公约关于保护国际性武装冲突受难者的附加议定书》 1977年6月8日在日内瓦签订,于1978年12月7日生效