我们介绍了光纤时间和频率分布技术的结果,这些技术为现有方法增加了可扩展性、安全性和可靠性。这包括使用码分多址 (CDMA) 向多个用户进行超稳定光频率分配,并增强抗噪能力。CDMA 方案还开辟了加密超稳定频率分布的可能性,相对频率精度超过 19 位。此外,我们还报告了 CERN 白兔 (WR) 协议的扩展,用于集成千兆光纤以太网和通过光纤网络进行亚纳秒时间分配。通过对现成的 WR 交换机进行软件修改,我们创建了冗余光学定时端口,从而允许系统同步到多个参考(原子)时钟,而不仅仅是一个。我们表明,这种经过修改的 WR 交换机可用于将来自多个参考时钟的信号组合成一个虚拟网络时间尺度,该尺度可以胜过任何单个时钟。这些概念可能用于定位、导航和定时 (PNT) 以及 (量子) 网络应用,这些应用需要独立于 GNSS 的可靠频率和时间源,但性能与 GNSS 相似或更好。
要与多GNSS接收器制造商实施对话,有必要对多GNSS接收器进行计时偏移准确要求。但是,由于复杂的物流和时间表和成本,很难让很多全球制造商参加有关正时互操作性的研讨会。因此,建议GNSS提供商大规模进行调查,并根据调查结果向ICG提交报告,以推动GNSS Time互操作性的改善。
“我们的杂货店充斥着超处的食品,这些食物贫穷,添加糖和盐。我们知道,这些食物正在使美国人长期疾病 - 与饮食相关的疾病是美国死亡和残疾的第一大原因。很长时间以来,许多食品行业中的许多人都优先考虑利润,这就是为什么我呼吁FDA在加工食品中实施盐和糖的减少。FDA已经在自愿减少钠目标方面取得了长足进步。现在是时候为添加糖做同样的事情了。我敦促FDA注意公共利益中的科学中心和纽约市卫生与精神卫生部的建议,以解决这一紧急公共卫生问题。”
在差分全球导航卫星系统(GNSS)的基于GNSS和GNSS的合作定位方法的背景下。讨论的架构提供相同的定位结果,同时为合作用户产生不同级别的隐私。随着隐私的增长以及未加密,加密和同态加密的解决方案,这些架构也涉及增加复杂的ITY。后一个方案是最算法的要求。但是,它通过采用同形加密来提供最高级别的隐私,从而可以在加密数据上执行添加和乘法操作以产生加密输出,而无需透露有关协作代理位置的信息。拟议的保留隐私合作立场计划显示出与非私人保护的同类产品相同的结果,同时提供隐私保证。基于此分析,可以为实时应用提供一些提出的解决方案,而同态加密是对延迟耐受性应用的有效解决方案。计算能力的进步将在不久的将来提高其总体可用性。
抽象的智能手机接收器包括大约15亿个全球赛车卫星系统接收器。智能手机接收器的信号水平较低,噪音较低,而噪声则比Commer CIAL接收器更高。由于对尺寸,重量,功耗和成本的限制,与这些接收器进行准确的定位尤其是在城市环境中,这是一项挑战。传统上,全球定位系统测量方法是通过基于模型的方法(例如加权最小二乘和卡尔曼过滤方法)处理的。基于模型的方法可以以后处理方式提供仪表级的定位精度,但这些方法需要对相应的噪声模型进行牢固的假设,并且需要对参数(例如协方差)进行手动调整。相比之下,已经提出了基于学习的方法,这些方法对数据结构做出了更少的假设,并且可以准确地对环境特定的错误进行建模。但是,这些方法比基于模型的方法提供了较低的精度,并且对初始化敏感。在本文中,我们提出了一个用于学习校正的混合框架,该框架对应于真实接收器姿势和估计位置之间的偏移。对于基于学习的方法,我们提出了一个图形卷积神经网络(GCNN),该神经网络可以学习具有多构造和多频信号的不同图形结构。为了更好地对GCNN进行初始化,我们使用Kalman滤波器来估计一个粗糙的接收器位置。然后,我们使用此粗糙接收器位置来调节输入特征到图。我们从Google智能手机分解挑战中测试了对现实世界数据集的建议方法,并比基于模型的方法(例如加权最小二乘和卡尔曼过滤器方法)显示出改进的定位性能。
重新进入•零时间:条目接口;在+20分钟左右的飞溅•血浆停电之前和之后进行良好的跟踪•在大气能跳过期间辍学•快速导航滤波器收敛和低噪声水平
- 提高导航信号的可用性可以提高卫星自主权,从而减少了对地面相互作用的需求并降低了操作成本。- 通过独立星座,信号,几何形状等的多样性来提高操作鲁棒性。- 减少基于地面通信资产的导航负担,简化任务体系结构。
几个新兴提供者正在针对低地球轨道(LEO)提供补充和替代位置,导航和时间(PNT),以满足某些应用程序的严格要求。在这里,我们研究了系统的架构元素,与中等地球轨道(MEO)全球导航卫星系统(GNSS)以及导致的性能交易的系统架构要素,相似性和差异。结果是一个系统,其形式与MEO中大约三十颗卫星的排列不同,每个卫星都具有原子频率标准,因为GNSS通常是由根本不同的要求驱动的。基于LEO的卫星导航有可能引入新的信号,以补充MEO中现有的GNSS,以为导航用户提供弹性,安全性和高精度。