摘要:卫星导航越来越重要,在众多非常不同的应用领域,从银行交易到运输,从自动驾驶到航空应用,例如商业航空电子产品以及无人驾驶飞机(无人机)。在非常精确的定位,导航和定时(PNT)应用程序中,例如在参考站和精确的计时站中,重要的是要表征系统中存在的所有错误,以便可能为其核算或校准它们。天线在这方面发挥了重要作用:它们确实是“传感器”,它从全球导航卫星系统(GNSS)中捕获空间中的信号,从而有助于总体实现的性能。本文回顾了当前可用的天线技术,针对特定的参考站以及用于空间应用的精确GNSS天线,并且在引入性能指标后,总结了当前可实现的性能。最后,确定开放研究问题,并讨论了解决这些问题的可能方法。
本文提出了一种视觉集成导航系统,用于引导飞机在最终下滑道上滑行。该系统利用机载视觉系统跟踪跑道特征并估计飞机相对于着陆跑道的 6D 姿态。如果 ILS 或 GNSS/SBAS 传感器性能下降或出现故障,所提出的视觉集成导航系统将允许飞机继续执行最终进近程序,并保持导航精度。为了处理由于图像处理时间而导致的此类基于视觉的测量不可忽略的延迟,建立了一个包含时间延迟测量的误差状态卡尔曼滤波器 (ESKF) 框架。所提出的延迟测量 ESKF 框架利用了这样一个事实:摄像机图像采集由系统触发,因此可以无延迟地通知。这使得导航滤波器能够及时向前执行估计状态的反向传播,以便在测量可用时为未来的校正步骤做好准备。基于此框架的视觉集成导航系统已开发出来,并在模拟中验证了其功能。其估计性能将通过固定翼无人机实验平台上的两种不同视觉系统进行飞行评估。
1 Wegener气候与全球变化中心(WEGC),格拉兹大学,格拉兹大学,奥地利,奥地利格拉斯2 FWF-DK气候变化,格拉兹大学,格拉兹大学,格拉兹大学,奥地利,奥地利,格拉斯大学,格拉兹大学,格拉兹大学,奥地利格拉兹大学4欧洲4欧洲组织,欧洲组织(Eumetsat),darmanytatt,emanany div>1 Wegener气候与全球变化中心(WEGC),格拉兹大学,格拉兹大学,奥地利,奥地利格拉斯2 FWF-DK气候变化,格拉兹大学,格拉兹大学,格拉兹大学,奥地利,奥地利,格拉斯大学,格拉兹大学,格拉兹大学,奥地利格拉兹大学4欧洲4欧洲组织,欧洲组织(Eumetsat),darmanytatt,emanany div>
Frank H. Bauer,FBauer 航空咨询服务公司 (FB-ACS) Werner Enderle,ESA/ESOC 导航支持办公室负责人
由于多径干扰和非视距接收的影响,城市环境中自动驾驶的高精度全球导航卫星系统 (GNSS) 定位仍是一个未解决的问题。最近,基于数据驱动的深度强化学习 (DRL) 的方法已被用于学习定位校正策略,这些方法适用于非平稳城市环境,而无需对模型参数进行严格的假设。然而,DRL 的性能严重依赖于训练数据的数量,而由于信号衰减和随机噪声大等问题,在城市环境中收集的高质量可用 GNSS 数据不足,导致 DRL 性能不佳和训练效率低下。在本文中,我们提出了一种基于 DRL 的定位校正方法,该方法结合自适应奖励增强方法 (ARAM),以提高非平稳城市环境中的 GNSS 定位精度。为了解决目标域环境中训练数据不足的问题,我们利用在源域环境中收集的足够数据来弥补训练数据不足,其中源域环境可以位于与目标环境不同的位置。然后我们
我们介绍了光纤时间和频率分布技术的结果,这些技术为现有方法增加了可扩展性、安全性和可靠性。这包括使用码分多址 (CDMA) 向多个用户进行超稳定光频率分配,并增强抗噪能力。CDMA 方案还开辟了加密超稳定频率分布的可能性,相对频率精度超过 19 位。此外,我们还报告了 CERN 白兔 (WR) 协议的扩展,用于集成千兆光纤以太网和通过光纤网络进行亚纳秒时间分配。通过对现成的 WR 交换机进行软件修改,我们创建了冗余光学定时端口,从而允许系统同步到多个参考(原子)时钟,而不仅仅是一个。我们表明,这种经过修改的 WR 交换机可用于将来自多个参考时钟的信号组合成一个虚拟网络时间尺度,该尺度可以胜过任何单个时钟。这些概念可能用于定位、导航和定时 (PNT) 以及 (量子) 网络应用,这些应用需要独立于 GNSS 的可靠频率和时间源,但性能与 GNSS 相似或更好。
Thomas Pany 教授就职于慕尼黑联邦国防军大学 (UniBw M) 的空间系统研究中心 (FZ SPACE),负责领导空间技术与空间应用研究所 (ISTA) 的卫星导航单元 LRT 9.2。他教授的导航课程侧重于 GNSS、传感器融合和航空航天应用。在 LRT 9.2 中,有十几名全职研究人员研究 GNSS 系统和信号设计、GNSS 收发器和高完整性多传感器导航(惯性、激光雷达),并且还在开发模块化无人机 GNSS 测试平台。ISTA 还开发了 MuSNAT GNSS 软件接收器,最近专注于智能手机定位和 GNSS/5G 集成。他拥有格拉茨技术大学 (sub auspiciis) 的博士学位,并在 GNSS 行业工作了七年。他撰写了约 200 篇出版物,其中包括一本专著,并获得了美国导航研究所颁发的五项最佳演讲奖。Thomas Pany 还组织了慕尼黑卫星
摘要:三维数字技术在考古站点的维护和监测中很重要。本文着重于结合陆地激光扫描和无人驾驶飞机(Phantom 4 Pro)摄影测量法,以建立三维模型和相关的Beaufort Castle(南黎巴嫩Arnoun)的数字文档。两种技术之间的总体差异足以生成收敛数据。因此,将陆地激光扫描和Phantom 4摄影测量数据对准并在反射后合并为兼容扩展。基于混合数据云的三维(3D)模型,具有平面和垂直几何形状。这项研究证明了在3D数字文档中使用陆地激光扫描和摄影测量法的潜力,以及对黎巴嫩考古遗址的空间分析。
厘米级、稳健的 GNSS 辅助惯性后处理,用于无本地参考站的移动测绘 J. J. Hutton a、N. Gopaul a、X. Zhang a、J. Wang a、V. Menon a、D. Rieck b、A. Kipka b、F. Pastor b a Trimble Navigation Limited,85 Leek Cr.,Richmond Hill,Ontario,Canada L4B 3B3 – (jhutton、ngopaul、xzhang、jhwang、vmenon)@applanix.com b Trimble Navigation Limited,Haringstrasse 19,Hohenkirchen-Siegertsbrunn Munich,85635,德国 – (Daniel_Rieck、Adrian_Kipka、Fabian_Pastor)@trimble.com ICWG III/I 关键词:差分GNSS、传感器方向、移动测绘、GNSS 辅助惯性、地理配准、机载测绘、直接地理配准、PPP 摘要:近二十年来,移动测绘系统一直使用全球导航卫星系统 (GNSS) 进行地理配准,以测量位置并使用惯性传感器测量方向。为了实现厘米级的位置精度,使用了一种称为后处理载波相位差分 GNSS (DGNSS) 的技术。为了使此技术有效,到单个参考站的最大距离不应超过 20 公里,而当使用参考站网络时,到最近站的距离不应超过约 70 公里。这种设置本地参考站的需求限制了生产力并增加了成本,尤其是在测绘大面积或长线性特征(例如道路或管道)时。用于从 GNSS 进行高精度定位的 DGNSS 替代技术是
10 差旅费 ICG 将向符合条件的国际参与者提供有限的差旅费资助。尼泊尔的参与者不提供国内旅行的差旅费资助。该资助仅涵盖参与者最近的国际机场和加德满都特里布万国际机场之间的往返经济舱机票。所有其他费用(酒店、保险和日常餐饮费用等)必须由参与者支付。当地组织者将提供与签证、酒店预订和其他交通相关事宜相关的后勤支持。但是,所有费用均由参与者承担。