摘要:转基因 (GM) 小鼠是生物医学研究中必不可少的工具。传统的转基因小鼠生成方法成本高昂,需要专门的人员和设备。使用成簇的规律间隔短回文重复序列 (CRISPR) 结合改进的输卵管核酸递送基因组编辑 (i-GONAD) 大大提高了在研究实验室中生产转基因小鼠的可行性。然而,由于 C57BL/6 (B6) 等近交系小鼠的生育能力低且胚胎脆弱,对其进行基因改造仍然具有挑战性。我们在尝试优化 i-GONAD 的同时,已在 B6 背景下成功生成了多种新型转基因小鼠品系。我们发现 i-GONAD 减少了超排卵怀孕雌性的产仔数,但不会影响怀孕率。自然交配或低激素剂量不会增加超排卵 B6 雌性中观察到的低生育率。然而,饮食丰富对怀孕成功有积极影响。我们还通过将接受 i-GONAD 治疗的怀孕 B6 雌性与同步怀孕的 FVB/NJ 伴母共同饲养来优化繁殖条件,以提高幼崽的存活率。因此,通过丰富的饮食和与生育能力强的雌性(如 FVB/NJ)共同抚养幼崽,增加了转基因小鼠的产生。在本研究中,我们使用 CRISPR/Cas 系统同时或连续靶向单个和多个基因座,产生了 16 只转基因小鼠。我们还比较了使用不同方法插入 LoxP 以产生条件性敲除小鼠的同源定向修复效率。我们发现,两步连续 LoxP 插入(其中每个 LoxP 序列在不同的 i-GONAD 程序中单独插入)是一种低风险、高效的产生 floxed 小鼠的方法。
这个研讨会的一个主要目标是为每个学生提供新浸渍的动物,每天下午执行性腺手术,直到他们取得成功。EGFP mRNA用于性腺电穿孔,并获得了荧光胚胎的成功。到此,每天早晨,在性腺手术后,从与特定学生外科医生相关的单个小鼠中分离出卵,并分析荧光。由研讨会结论,所有学生都成功地产生了发光的胚胎。此外,由于大量的女性,外部讲师(Gurumurthy博士和Williams博士)以及供应商(来自BEX Inc.)能够成功执行该技术。显微注射,在整个课程中,两个带有Zygotes的微注射系统可供学生在教师监督下利用作为此技术的介绍。
使用基因靶向技术创建的抽象基因工程动物长期以来一直被认为是探索感兴趣基因功能的有益,有效和有价值的工具,至少至少在2013年初。然而,这种方法遭受了费力且耗时的任务,例如成功靶向胚胎干细胞(ES)细胞的产生,其表征,携带这些基因修饰ES细胞的嵌合胚泡的产生,以及将操纵囊肿的人移植到受体(Pseudopopeprepepregnant)的女性中,将其移植到chimericers中。由于基因组编辑技术的出现(现在是CRISPR/ CAS9系统的例证)在2013年底,通过基因组编辑成分的前核微介入(MI)在基因组编辑的动物的产生中取得了重大进展,将成分纳入受精的彩蛋(Zygotes)或Zygotes中的Zygotes中。但是,这些程序要求将基因组编辑的胚胎转移到受体女性的生殖道中,以进行进一步发展。通过卵形核酸递送(GONAD)及其修饰的版本(称为“改进的性腺(I-Gonad)”的基因组编辑是作为MI-EP或EP基因组基因组编辑的动物生产的一种替代方法,现在被认为是非常方便的基因组编辑,仅在vivo中表现出lum un lum curvical invi vivo。该系统还可以同时转染卵形腔内的上皮细胞。在这篇综述中,我们总结了性腺/ I -Gonad及其衍生物的最新进展,并讨论了这些技术研究与女性繁殖有关的各种生物系统的潜力。
摘要:特异性抗体对于蛋白质复合物的细胞和组织表达、生化和功能分析必不可少。然而,制备特异性抗体通常费时费力。将内源性蛋白质的表位标记在适当的位置可以克服这个问题。在这里,我们使用 AlphaFold2 蛋白质结构预测研究了表位标签位置,并结合 CRISPR-Cas9 基因组编辑和电穿孔 (i-GONAD) 开发了 Flag/DYKDDDDK 标签敲入 CaMKII α 和 CaMKII β 小鼠。使用 i-GONAD,可以将长达 200 bp 的小片段插入目标基因的基因组中,从而实现高效便捷的小表位标记。使用市售的抗 Flag 抗体进行实验,可以通过蛋白质印迹、免疫沉淀和免疫组织化学轻松检测内源性 CaMKII α 和 β 蛋白。我们的数据表明,通过 i-GONAD 生成 Flag/DYKDDDDK 标签敲入小鼠是一种有用且方便的选择,特别是在没有特定抗体的情况下。
CRE/ LOXP系统是体内基因功能研究的强大工具。CRE重组酶的调节表达以空间和时间控制的方式介导了遗传因素的精确缺失。尽管该系统具有鲁棒性,但仍需要大量精力为每个感兴趣的单个基因创建有条件的敲除模型,在这些基因中,必须同时将两个LOXP位点插入顺式。当前的工作涉及劳动密集型胚胎(ES)细胞 - 基于基因靶向小鼠胚胎的基因和乏味的微观畅通。该工作流的复杂性构成了技术挑战,因此限制了有条件遗传学的更广泛应用。在这里,我们通过将CRISPR供体的独特设计与新的Oviduct电穿孔技术I I -Gonad集成了一种替代方法来生成鼠标LOXP等位基因。显示了这种方法的潜力和简单性,我们在一次尝试中创建了五个基因的FloxErx等位基因,其成本相对较低,设备设置最少。除了条件等位基因外,还获得了本构敲除等位基因作为这些实验的副产品。因此,I -Gonad的更广泛应用可能会使用新型鼠模型促进基因功能研究。
应用于产生基因组编辑的大鼠,包括白化病sprague-dawley和白化病刘易斯大鼠(但是,不是有色的棕色挪威[bn]大鼠)。我们观察到成功的I -Gonad取决于所使用的小鼠菌株。例如,在随机繁殖小鼠(例如ICR和C3H/HE×C57BL/6)中,它在相对严格的电气条件下成功,但在C57BL/6菌株中却没有成功。在不太严格的条件下,I -Gonad在C57BL/6菌株中取得了成功。我们推测使用BN大鼠对I -Gonad也是如此。在应用> 500 mA的电流时,我们未能获得大鼠后代(胎儿/新生儿);但是,使用NEPA21(NEPA基因)在100-300 Ma下I-Gonad导致基因组编辑的BN大鼠的产生,其效率为75%-100%。同样,使用CUY21EDIT II(BEX Co.)在150-200 Ma的电流下,I-Gonad导致基因组编辑的BN大鼠的产生,其效率为24%-55%。这些实验表明,在执行I -Gonad时,根据所使用的大鼠菌株选择适当的电流值的重要性。
GAP JUNCTIONS ......................................................................................... 10 .....................................................................................连接蛋白的结构12 .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................间隙连接的形成16 CONNEXINS之间相互作用的相互作用............................................................................................................................................................................................................................................................................................................................................................................................................................................................. -19