4卫生与康复系,瑞典哥德堡大学Sahlgrenska Academy神经科学与生理学研究所物理治疗部门。 哥德堡大学以人为中心的护理中心(GPCC),Sahlgrenska Academy,哥德堡大学,哥德堡大学,瑞典4卫生与康复系,瑞典哥德堡大学Sahlgrenska Academy神经科学与生理学研究所物理治疗部门。哥德堡大学以人为中心的护理中心(GPCC),Sahlgrenska Academy,哥德堡大学,哥德堡大学,瑞典
研究区域:位于西非和中部非洲北部的数据扫描盆地。研究重点:多次研究表明,全球栅格降水数据集可以为撒哈拉以南非洲的观察到的数据缺乏替代方案。这项工作评估了15个基于卫星降雨前的封闭前数据集(Arc v.2,Chirp v.2,Chirps v.2,Persiann-CDR,MSWEP v2.2和Tamsat V2.2和Tamsat V3),Reanalission,Reanalission,ERA5,JRA-55,JRA-55,Merra-2 Adj,Merra-2 Prectot,Merra-2 Prectot,Merra-2 Prectot,Merra-2 prectotcort and toctor and toctor and tho测量值(CPC V.1,CRU TS v.4.00和GPCC V.7)以及基于空间接近的区域估计方法,用于简单的每月水平衡模型GR2M的参数。基于分式样本的海上时间验证方案中的克林 - 古普塔效率评分评估了GR2M模型的区域模拟。该地区的新水文见解:结果表明,在所有降水产品中,Chirps是每月时间段的西部和中非水文建模最有效的。此外,排名前五的产品包括WFDEI-CRU,CRU,WFDEI-GPCC和GPCC。总体而言,区域水文建模对小于80,000 km 2的盆地更有效。通过空间接近度进行区域化的方法会导致各种降水产物再现排放的能力的总体下降,最值得注意的是使用WFDEI-GPCC和GPCC。chir仍然是最好的产品。
从阳性血液培养物(PBC)中的革兰氏染色的抽象手动显微镜对于诊断血液感染至关重要,但仍然是劳动量,耗时,耗时和主观的。这项研究旨在评估将全自动数字显微镜与深卷积神经网络(CNN)相结合的扫描和分析系统,以协助对PBCS的革兰氏污渍的解释,以供常规实验室使用。The CNN was trained to classify images of Gram stains based on staining and morphology into seven different classes: background/false-positive, Gram-positive cocci in clusters (GPCCL), Gram-positive cocci in pairs (GPCP), Gram-positive cocci in chains (GPCC), rod-shaped bacilli (RSB), yeasts, and多数型标本。总共扫描,预先对PBC进行了1,555个污染的PBC幻灯片。通过矩阵辅助激光解吸/电离飞行时间质谱法(MALDI-TOF MS)将辅助革兰氏染色解释的结果与手动显微镜和文化物种鉴定的结果进行了比较。The compari son of assisted Gram stain interpretation and manual microscopy yielded positive/neg ative percent agreement values of 95.8%/98.0% (GPCCL), 87.6%/99.3% (GPCP/GPCC), 97.4%/97.8% (RSB), 83.3%/99.3% (yeasts), and 87.0%/98.5% (否定/假阳性)。与MALDI-TOF MS物种鉴定相比,辅助的革兰氏污渍解释也产生了相似的结果。在分析性能研究中,辅助解释显示出极好的可重复性和可重复性。PBC中的任何微生物都应以10 5 CFU/mL的确定限制检测到。尽管基于CNN对PBC的革兰氏污渍的解释尚未准备好临床实施,但它具有未来的整合和进步的潜力。
为下一步做什么!℠在2024年的年龄:每年的这个时候18岁以上,我们开始考虑下一步要采取的措施。为2024年的下一步设置了什么!是一个小组教练空间,您将开始设计和改变明年愿景的过程。该如何工作:准备您想完成,更改或创建(您的议程/主题)的事情。典型的教练领域包括:工作/业务变化,个人成长,专业发展,改善工作/生活平衡,健康,管理优先级。在本届会议中,您将阐明您的“项目”,并留下路线图,以朝着选择的方向前进。开始创建2024年下一步的过程!讲师:Liz Baldasano JD,ICF-ACC地点:GPCC星期二,1/9 6:45 PM--8:15PM计划#:101104.01价格:$ 50 Res/$ 63 NR
Readme Chelsa - 地球表面积高分辨率的气候。1.1版Chelsa(http://chelsa-climate.org/)是高分辨率(30弧sec,〜1 km)的气候数据集,用于地球地面面积。版本1.0是第一个版本。它包括1979 - 2013年期间的每月和年平均温度和降水模式。chelsa_v1基于ERA临时全球循环模型(http://www.ecmwf.int/en/research/climate/climate-reanalysis/era inersy/ERAS)的准机械统计降低缩减(http://www.ecmwf.int scalime ofera) (https://www.ncdc.noaa.gov/ghcnm/)偏置校正。规格:高分辨率(30 Arcsec,〜1 km)降水量和温度每月覆盖1979 - 2013年掺入topocclimate(例如,地形降雨和风场)。缩小的ERA-Interim模型。允许根据每月值(例如干燥期长度等)计算派生参数。Chelsa的所有产品均位于参考WGS 84水平基准的地理坐标系中,水平坐标为小数为小数。Chelsa层的扩展(最小和最大纬度和经度)是从1- arc-second gmted2010数据继承的坐标系的结果,该数据本身从1- arc-second srtm数据继承了网格范围。请注意,由于输入GMTED2010数据的像素中心引用,每个Chelsa网格的全部范围由像素的外部边缘定义与纬度或经度的整数值不同,而纬度或经度的整数值为0.00013888888度(OR 1/2 Arc-Second)。基于Legacy Gtopo30产品的产品用户应注意,Chelsa(和GMTED2010)和GTOPO30的坐标参考并不相同。在gtopo30中,纬度和经度的整数线直接落在30弧秒的像素的边缘上。因此,当用基于GTOPO30的产品覆盖Chelsa时,将在相应30- arc-second像素的边缘之间观察到1/2弧形 - 第二位。数据集为Geotiff格式。可以使用标准GIS软件(例如:saga gis - (免费)http://www.saga-gis.org/ arcgis -https://wwwww.arcgis.com/ qgis-qgis- qgis-(免费) GIS-(免费)https://grass.osgeo.org/从现在的1.0网格范围变化,现在类似于GMTED2010分辨率(十进制程度)的一个:0.00833333333西范围西范围(最小x配合,x配置,最小值):-180.000.000.000.000.000.000.000.000.000.000.000.000.000.000138888 ymimuimum y mimum y -00 musitive y latitive 8.90 0.90:90.90:90.90。范围(最大X坐标,经度):179.9998611111 NorthExtent(最大Y坐标,纬度):83.9998611111行:20,800 Columsn:43,200 - 每月降水版本1.1现在具有GHCN偏置校正。
基于材料和方法观察数据集1月1个月度流动时间序列(根据每日记录计算)是从2个全球流量指数和元数据存档(GSIM)获得的(18,47)。全球径流数据3中心(48)(GRDC)数据库,以每月规模提供河流流量,该数据库被4 GSIM排除,用作补充数据集。要计算具有最小偏差的RF,制定了两个5个选择标准:i)研究期限从1965年到2014年,以确保6个足够的站点进行空间覆盖范围的足够分析; ii)每月排放量仅在每年8个月可用10个月或更长时间的数据时才能计算年度季节性指数。鉴于气候迅速变化,我们通过将五个定期更新的河流流量数据集(表S3)从国民到2017 - 2019年全球水平结合在一起,扩展了分析,以包括最近的9年。拥有国家或11个大陆数据库的国家/地区的所有GRDC站(例如USGS数据)被替换,以避免重复的时间12系列河流。13为了获得全球范围的覆盖范围,使用了最近发表的全球栅格每月14个径流(Grun)数据集的重建(19)。Grun是从GSIM的原地15个月度河流流量观测到的,其空间分辨率为0.5°,涵盖了1902年至2014年的16个时期(19)。它是通过训练基于全球土壤湿度的降水和温度观察的机器学习算法的17阶段(GSWP3)数据集(19)的训练,因此,Grun无法明确考虑19的效果。S17)。观察到来自GRDC数据集的每月河流排放,并从部门间影响模型对比21项目(ISIMIP2A)重建的2A阶段的20个多模型模拟用于验证(19)。在新出版的G-Run合奏中的另外四个成员22在1965 - 2014年重叠,用来23个说明了径流上大气强迫数据集的不确定性,包括径流24次被CRUTSV4.04,GSWP3-W5E5,GSW3-W5E5,GSWP3-EEMBI和PGFFV3 25(49)强迫。与G-Run合奏的AE趋势的空间模式与Grun 26支持使用Grun进行气候变化检测和归因分析,而27进一步证实了我们结果的鲁棒性(图总而言之,原位观察结果28结合了气候变化的影响(包括ACC,自然强迫和自然29气候变化)和人类活动(例如储层,人类水管理和30种土地利用变化,缩写为HWLU)。相反,Grun和G-Run Ensemble仅31个说明了气候变化的影响。为了排除储层对原位观测值的RFS趋势的空间32模式的影响,水合物subbasin单元(PFAFSTETETER 33级别12)(50)与Grill等人提供的调节程度(DOR)集成在一起。(51)至34个将量规站区分为受储层影响(DOR> 0)的量规站,以及由储层(dor = 0)受到影响的35个。subbasin单位水平的DOR通过在河流范围内选择DOR的36个最大值来表示。使用了1965年至2014年期间的5×5°分辨率的crutem5数据集的平均空气温度数据(55)。有6,150个站点从储层影响中确定为37个,而3,914个站位于sibbasins或38个水库的下游(有49个车站由于在39个岛屿上的存在,而另外7个缺乏DOR信息的车站,因此位于水力发生范围外的49个站点)。在1979 - 2000年的平均降雪与降水量41的比例(52)时,全球范围内的40个降雪区域(52)都在全球范围内确定,其中包含0.5°的全球42降水量和降雪通量。2014年降雪时间序列的时间序列是根据全日制44覆盖率的第五代大气再分析(ERA5)计算得出的(53)。为排除降水季节性,观察到的每月栅格降水45来自全球降水气候中心(GPCC)(54)的数据以2.5×46 2.5°的分辨率在1965-2014时以每月量表为单位。48