g蛋白偶联受体(GPCR)在各种生理过程中起关键作用,并成为7个关键靶标的药物发现靶标。肽是针对8种GPCR的特别引人注目的治疗剂,因为它们经常表现出优异的亲和力,选择性和效力。然而,GPCR的动态构象状态深刻影响其与配体的相互作用10,强调了对肽设计中特定国家特定策略的需求。为了解决这个问题,11我们开发了针对GPCR的有效状态特异性肽设计框架。此方法12包括对GPCR状态转变机制的分析和特殊优化的肽结构13 GPCR,Helixfold-Multistate的预测模型,从而使我们能够评估14个设计肽的状态特异性分数。在最近的GPCR肽PDB上,HelixFold-Multistate不仅保持GPCR 15活性状态,类似于Alphafold-Multistate,而且还表现出高相互作用预测能力16与Alphafold-Multimer在Dockq和IRMS方面相当。对CXCR4肽亲和力的实验17数据表明,其置信度得分比Alphafold-Multistate的18个具有更高的相关性和筛选能力。通过采用这种设计方法,我们成功地鉴定了生长激素促促促素受体(GHSR)和Apelin受体20(APJ)的激动剂19和拮抗剂肽,分别表现出低于100 nm和10 nm的EC50值。尽管拮抗剂21肽面临挑战,但我们的方法还鉴定了GHSR和APJ的抑制剂,其IC50值分别为3.3 µm和22 20.3 µm。23 div>
TX45,一种FC - 雷丝素融合,在人类受试者的剂量降低研究中,马萨诸塞州波士顿 - 2023年11月28日 - 构造治疗公司,一家生物技术公司,转化了新颖的GPCR治疗疗法的发现(GPCR靶向的受体),该公司宣布的是,今天已经宣布的是,今天已经宣布的是,今天已经宣布的是,该公司的生物技术公司的发现,该公司是宣布的,今天已经宣布了一部分,这是一家生物技术的生物技术公司,该公司宣布了一部分,这是宣布的。针对RXFP1受体的FC-雷丝蛋白融合程序。“我们第一次人类研究的开始是一个关键而令人兴奋的里程碑。我们期待看到患者的松弛素生物学潜力。”构造治疗总裁兼首席执行官Alise Reicin说。松弛素通过作为RXFP1受体的激动剂的作用,产生独特而多样的生物学作用,包括肺部和全身性血管舒张,组织重塑 /纤维化反转和炎症减少。由于这些功能,它提供了相似的潜在治疗应用,并在心肺疾病中预期有重大好处。被称为“妊娠激素”,在怀孕期间被上调,以帮助准妈妈的心血管系统满足发育中胎儿的需求增加,并重塑了与分娩有关的组织和肌肉骨骼结构。构造的TX000045 FC-激素融合蛋白(“ TX45”)是潜在的一流药物,这是由于蛋白质工程造成的,旨在克服人类激素的生物物理性质限制并实现最佳的药代动力学,靶向,目标参与和发展性特性。有关更多信息,请访问www.tectonictx.com,或在LinkedIn上关注我们。在健康志愿者的剂量升级安全研究完成后,TX45的持续发展将集中在解决心脏肺迹象的未满足需求的领域。“ TX45对于大量心血管疾病的患者可能是一种潜在的变革性疗法,”波士顿儿童医院儿童医院的联合创始人蒂姆·斯普林格(Tim Springer)博士说。他还补充说:“ TX45是公司在新型GPCR靶向生物学发展方面执行的能力的典范。我们期待着未来的临床计划从Tectonic的平台中出现。”关于由安德鲁·克鲁斯(Andrew Kruse)和哈佛医学院的蒂姆·斯普林(Tim Springer)共同创建的构造治疗性构造正在改变针对GPCR的抗体和其他生物药物,以开发针对当前治疗不足的患者的新疗法凭借其专有的Geode平台,构造旨在解锁该类别最困难的受体的治疗效用,而小分子药理学可能会棘手。投资者联系人:Christian Cortis,博士构造治疗ccortis@tectonictx.com(781)327-2606媒体联系人:Karen Sharma MacDougall ksharma@macdougall.bio(781)235-3060
该计划已知GPCR介导的信号传导是通过激活许多信号因子(包括异三聚体G蛋白(注3),GPCR激酶(GRK)(注4)和β-arrestin(注5)(图1)来进行的(图1)。该研究小组创建了大量使用CRISPR-CAS9方法(注6)(一种基因组编辑技术)在GPCR信号传导因子上不足的细胞(图2)。使用这些细胞的研究表明,通过GPCR信号中的β-arrestin,GPCA蛋白的选择性激活以及通过GRK调节GPCR活性的信号传导。这篇审查论文(包括尖端的研究报告)解释了遗传缺陷培养的细胞揭示的信号转导因子的新功能,以及有关多种类型的基因缺陷培养的细胞的详细信息。此外,我们提出了一种使用遗传缺陷培养细胞(图3)和新药理工具的开发来对疾病涉及的信号转导因子的功能分析方法。未来的发展本综述希望,随着使用基因缺陷型细胞的分析,将来将进一步加速GPCR研究。此外,通过创建缺乏更多信号转导因子并在具有不同特性的培养细胞系中建立基因缺陷细胞的细胞,预计它将导致涉及GPCR信号转导因子的疾病机制,并涉及科学进步。
近年来,抗体-药物偶联物 (ADC) 已成为一种有前途的抗癌治疗剂,其中几种已获准用于治疗实体瘤和血液系统恶性肿瘤。随着 ADC 技术的不断改进和 ADC 可治疗的适应症范围的扩大,靶抗原的范围也不断扩大,并且无疑将继续增长。G 蛋白偶联受体 (GPCR) 是与多种人类疾病(包括癌症)有关的明确治疗靶点,是 ADC 的一个有前途的新兴靶点。在这篇综述中,我们将讨论 GPCR 过去和现在的治疗靶向,并描述 ADC 作为治疗方式。此外,我们将总结现有的临床前和临床 GPCR 靶向 ADC 的状态,并探讨 GPCR 作为未来 ADC 开发新靶点的潜力。
摘要 我们介绍了一系列关于 G 蛋白偶联受体 (GPCR) 遗传学和药物遗传学的三篇文章。在第一篇文章中,我们讨论了与人类表型相关的 G 蛋白亚基和辅助蛋白的遗传变异;在第二篇文章中,我们在此基础上讨论了“G 蛋白偶联受体 (GPCR) 基因变异和人类遗传疾病”,在第三篇文章中,我们概述了“G 蛋白偶联受体药物基因组学”。在本文中,我们将在由辅助蛋白和 G 蛋白的致病变异导致的人类遗传疾病的背景下,回顾配体结合、GPCR 活化、失活以及受体运输到膜的过程。在不同表型中检查了编码 G 蛋白 α 和 β 亚基的基因的致病变异。编码修饰或组织 G 蛋白偶联的辅助蛋白的基因变异与疾病有关;这些包括 G 蛋白信号调节器 (RGS) 变异对高血压的贡献; G 蛋白信号传导激活剂 III 型变体在缺氧等表型中的作用;RGS10 基因变异对身材矮小和免疫功能低下的影响;以及 G 蛋白偶联受体激酶 (GRK) 变体(如 GRK4)在高血压中的作用。本文概述了编码参与 GPCR 信号传导的蛋白质的基因变异,这些变异可能与人类表型相关的结构和功能变化。
g蛋白偶联受体(GPCR)在能量稳态中具有关键作用,有助于食物摄入,能量消耗和血糖控制。能量消耗的失调可能导致代谢综合征(腹部肥胖,血浆甘油三酸酯,LDL胆固醇和葡萄糖以及高血压),这与肥胖的风险增加有关,糖尿病,糖尿病,非伴酒脂肪脂肪脂肪脂肪肝病和心脏病。随着这些慢性疾病的流行率在全球范围内持续上升,因此需要越来越需要了解能量消耗的分子机制,以促进有效的治疗策略的发展,以治疗和预防这些疾病。近年来,针对GPCR的药物一直是改善2型糖尿病和肥胖症治疗方法的重点,而GLP-1R激动剂具有特殊的成功。在这篇综述中,我们专注于九个在能量体内平衡中作用的GPCR,这些GPCR是治疗肥胖和糖尿病的当前和新兴靶标。我们讨论了针对这些受体和挑战的药物的临床模型和临床试验的发现,在这些药物可以在诊所中常规使用之前,必须克服这些受体和挑战。我们还描述了有关这些受体信号的新见解,包括辅助蛋白,有偏见的信号传导和复杂的空间信号传导如何提供独特的机会来开发更有效的疗法具有更少的副作用。最后,我们描述了多种GPCR的综合疗法如何靶向,可以改善临床结果并减少脱靶效应。
肥胖、超重和 2 型糖尿病 (T2D) 是主要的公共卫生问题。脂肪组织将多余的能量储存为脂肪,并充当内分泌器官,释放影响新陈代谢、食欲和胰岛素敏感性的激素和炎症分子。我们的研究特别关注与肥胖/糖尿病有关的 G 蛋白偶联受体 (GPCR) 的功能。GPCR 具有重要的治疗意义,因为它们很容易被药物靶向。我们正在寻找一位积极主动且才华横溢的博士后研究员加入一个资助项目,旨在通过体外和体内实验揭示 GPCR 在肥胖和糖尿病中的作用(PI:Julie DAM 博士)。
肥胖,超重和2型糖尿病(T2D)是主要的公共卫生问题。脂肪组织将多余的能量作为脂肪存储,并充当内分泌器官,释放影响代谢,食欲和胰岛素敏感性的激素和炎性分子。我们的研究专门关注与肥胖/糖尿病有关的G蛋白偶联受体(GPCR)的功能。GPCR具有重大的治疗兴趣,因为它们很容易被药物瞄准。我们正在寻求一名有动力且才华横溢的博士后研究人员加入一个资助的项目,旨在使用蜂窝和体内实验(PI:Julie Dam博士),旨在揭示GPCR在肥胖和糖尿病中的作用。
图2 G蛋白亚基激活后触发的G蛋白偶联受体的各种信号通路的示意图(A,B和C)。激动剂结合的GPCR在G A亚基上交换GDP,从而触发了G a(S,I,Q,12)从受体和G BC触发。(a)激活的G A S刺激膜相关的酶腺苷酸环化酶(AC),从而增加了ATP - CAMP转换。cAMP充当第二个使蛋白激酶A(PKA)的信使,该蛋白激酶A(PKA)可以磷酸化多个下游靶标。而g a i亚基抑制了交流。(b)激活的G A Q刺激膜结合的磷脂酶C(PLC)至裂解磷脂酰肌醇双磷酸盐(PIP 2)进入第二个使者三磷酸肌醇(IP 3)和二酰基甘油(DAG)。IP 3增加了细胞内钙浓度(Ca 2+),而膜结合的DAG通过将其从细胞质转移到质膜来激活PKC。GPCR激酶(GRK)磷酸化G蛋白独立的配体结合GPCR,以启动B- arrestin的募集并阻止G蛋白偶联。 GPCR-B - 抑制蛋白复合物促进内吞作用,运输配体 - GPCRs对内体进行分类,以回收到质膜或信号和各种细胞过程的信号传导和调节。 用Biorender(biorender.com)准备的数字。GPCR激酶(GRK)磷酸化G蛋白独立的配体结合GPCR,以启动B- arrestin的募集并阻止G蛋白偶联。GPCR-B - 抑制蛋白复合物促进内吞作用,运输配体 - GPCRs对内体进行分类,以回收到质膜或信号和各种细胞过程的信号传导和调节。用Biorender(biorender.com)准备的数字。
Tectonic 由哈佛医学院生物化学和分子药理学教授 Andrew Kruse 博士和哈佛医学院医学教授、Latham Family 教授兼生物化学和分子药理学教授 Timothy A. Springer 博士于 2019 年共同创立,他们都是膜蛋白生物化学和免疫学领域的世界知名科学家。Tectonic 的使命是通过生物制剂充分发挥 GPCR 靶向疗法的潜力。Springer 博士是国际公认的免疫学家,也是 A 轮融资的重要投资者,他创立了多家生物技术公司,包括 LeukoSite、Scholar Rock 和 Morphic Therapeutic,也是 Moderna 和 Editas Medicine 的创始投资者。他的研究促成了 Campath®、Velcade® 和 Entyvio® 等几种重要药物的发现。基于 Kruse 博士实验室的开创性工作,Tectonic 专有的 GEODe 平台克服了迄今为止在发现调节 GPCR 信号传导的生物制剂方面遇到的挑战,从而推动了新型 GPCR 靶向疗法的发展。