3 系统模块 ................................................................................................................................................ 6 3.1 CPU .......................................................................................................................................... 6 3.2 内存 .......................................................................................................................................... 6 3.2.1 ROM ............................................................................................................................................. 8 3.2.2 SRAM ............................................................................................................................................. 8 3.2.3 FLASH ............................................................................................................................................. 8 3.2.4 eFuse ............................................................................................................................................. 8 3.2.5 内存地址映射 ............................................................................................................................. 9 3.3 引导和执行模式 ............................................................................................................................. 9 3.3.1 引导加载程序 ............................................................................................................................. 9 3.4 电源、时钟和复位 (PCR) ............................................................................................................. 10 3.5 电源管理 (POWER) ................................................................................................................ 10 3.6 低功耗特性.................................................................................................................... 12 3.6.1 工作和休眠状态 .......................................................................................................................... 12 3.6.1.1 正常状态 .......................................................................................................................... 12 3.6.1.2 时钟门控状态 ...................................................................................................................... 12 3.6.1.3 系统休眠状态 ...................................................................................................................... 12 3.6.1.4 系统关闭状态 ...................................................................................................................... 12 3.6.1.5 UVLO .................................................................................................................................... 12 3.6.2 状态转换 ................................................................................................................................ 13 3.6.2.1 进入时钟门控状态和唤醒 ...................................................................................................... 13 3.6.2.2 进入睡眠/关闭状态和唤醒 .............................................................................................. 13 3.7 中断................................................................................................................................... 13 3.8 时钟管理................................................................................................................................... 14 3.9 IOMUX...................................................................................................................................... 15 3.10 GPIO...................................................................................................................................... 17 3.10.1 DC 特性............................................................................................................................. 17
SCS3740 是第一款现成的四核 LEON 4FT 3U SpaceVPX SBC,在紧凑的外形尺寸中进行了 SWaP(尺寸、重量和功率)优化 - 重量 550 克,功耗仅为 5 瓦。SCS3740 具有出色的总电离剂量(TID > 100krad(Si))和单粒子效应(150 年 1 次翻转(GEO))辐射性能,可在紧凑的 3U SpaceVPX 外形尺寸中提供高性能处理(高达 1700 DMIPS 和至少 90 Linpack MFLOPS)。它采用了 DDC 的多种 Rad-Hard Sp-COTS TM(太空商用现货)存储器,包括 32GB 纠错 NAND 闪存、128MB SDRAM 和 4MB EEPROM。此外,它还提供许多 I/O 选项,包括 (8) SpaceWire 端口 (200Mb/秒)、(2) UART、(2) CANbus、(2) I 2 C、(1) SPI、GPIO、(1)1553 和以太网。
LPC2364/66/68 是多用途串行通信应用的理想选择。它们集成了 10/100 以太网媒体访问控制器 (MAC)、具有 4 kB 端点 RAM 的 USB 全速设备、四个 UART、两个 CAN 通道、一个 SPI 接口、两个同步串行端口 (SSP)、三个 I 2 C 接口和一个 I 2 S 接口。这些串行通信接口与片上 4 MHz 内部振荡器、高达 32 kB 的 SRAM、用于以太网的 16 kB SRAM、用于 USB 和通用用途的 8 kB SRAM 以及 2 kB 电池供电的 SRAM 相结合,使这些设备非常适合通信网关和协议转换器。各种 32 位计时器、改进的 10 位 ADC、10 位 DAC、一个 PWM 单元、一个 CAN 控制单元以及多达 70 条快速 GPIO 线(带有多达 12 个边缘或电平敏感的外部中断引脚)使这些微控制器特别适合工业控制和医疗系统。
I2C端口(SDA,SCL),硬件UART(RX,TX)和SPI(SCK,MOSI,MISO)的PIN号已更改。如果您的代码对这些引脚有过硬编码的使用,则您需要用新数字替换它们,或更改代码以使用SDA或SCK(例如SDA或SCK)的“漂亮”名称。在Espressif板支持包中选择新的Feather ESP32 V2板时,将替换正确的数字。请注意,名称位于同一位置,我们没有更改I2C/ UART/ SPI引脚位于板上的位置,正是它们在模块中连接的ESP32 PIN号。TX旁边的“角”引脚已从引脚21变为37。此引脚均未在任何羽毛上使用,因为它被认为是“额外的销钉”。它也从GPIO更改为仅输入,其余的编号引脚和A0-A5引脚没有更改PIN号码。
• A121 60 GHz 脉冲相干雷达 (PCR),集成基带、RF 前端和封装天线 (AiP) • 32 位 ARM ® Cortex ® M4 MCU (STM32L431CBY6),80 MHz 时钟速度,128kB 闪存,64 kB RAM • 18.6x15 mm 小型尺寸,针对最大天线增益进行了优化 • 1.8 V 模拟和数字电源 • 1.8 V 或 3.3 V IO 接口电源 • 工作温度 -40° 至 85°C • 通过 UART、I2C、GPIO、复位支持外部 I/F • SWD/JTAG 用于 SW 闪存和调试 • 可以集成在塑料或玻璃天线罩后面,无需任何物理孔径。有关更多信息,请参阅硬件和物理集成指南 [6]。 • 平面栅格阵列 (LGA) 焊盘 • 提供密封卷轴,用于自动组装 • 用于 SWD 编程的 PCB 测试点
•9.6V≤VpWr≤63V操作,75 V瞬态•7至14个单元管理•隔离的2.0 Mbps差分通信或4.0 Mbps SPI•可解决初始化时可解决•双向收发剂•双向收发器•双向收发器支持多达63个节点,最多63个节点链中的链条•0.8 mV的总尺度•AN量•AN量•AN量•AN量•AN量•AN量•同步量•同步•同步,同步•同步量,电压测量•总堆栈电压测量•七个GPIO/温度传感器输入•5.0 V时5.0 V时,参考供应输出•自动超过/欠电压和温度检测可通向故障销钉的可路由到故障销钉•超电压和不足的睡眠模式•集成的不足和温度监控•在板上和外部插件的插件和外部插件•在型号和外部插件••置于诊断的空间•,••置于诊断的空间•,•••随着诊断的漏洞•,•随着诊断的启动•,•随着诊断的启动•,•随着诊断的启动•,•随着诊断的开放式孔,•随着诊断的开放式,•随着诊断的开放式漏洞,•随着临床的开放率,• 26262,直至ASIL D安全系统。•符合AECQ-100
固定 I/O DSP 应专门设计用于 Tesira® 系统。固定 I/O DSP 应支持 Dante™ 数字音频网络,最多可支持 32 x 32 个通道。Dante 网络连接应在 RJ-45 连接器上实现。固定 I/O DSP 应根据 AES67 标准实现互操作。固定 I/O DSP 应支持以太网连接,用于在 RJ-45 连接器上进行编程和控制。固定 I/O DSP 应具有内部 DSP 处理功能。固定 I/O DSP 应包括 4 个通用输入和输出连接 (GPIO) 通道,用于发送或接收逻辑信号。GPIO 端口的编程应为软件可配置的。固定 I/O DSP 应包括 RS-232 连接,用于控制数据传输到固定 I/O DSP 或从固定 I/O DSP 传输数据,并且此类操作应为软件可编程的。固定 I/O DSP 应包括标准 USB-B 型连接器上的通用串行总线 (USB) 连接。固定 I/O DSP 应可由软件配置,以便将最多 8 个通道的数字 USB Class 1 音频传输流式传输到固定 I/O DSP 或从固定 I/O DSP 传输出去,或同时输入和输出。固定 I/O DSP 应支持通过 IEEE 802.1X 进行端口身份验证。固定 I/O DSP 应提供 12 个平衡输入连接,用于接收旋入式可拆卸连接器上的麦克风或线路电平模拟音频信号。固定 I/O DSP 应提供 8 个平衡输出通道,用于传输旋入式可拆卸连接器上的麦克风或线路电平模拟音频信号。每个单独的通道都应有自己的专用连接。固定 I/O DSP 应在前面板 OLED 上提供设备电源、状态、警报和活动以及系统范围警报的标识。固定 I/O DSP 应为机架安装式 (1RU),并具有软件可配置的信号处理功能,包括但不限于:信号路由和混合、均衡、滤波、动态和延迟,以及控制、监控和诊断工具。固定 I/O DSP 应带有 CE 标志、UL 认证,并应符合 RoHS 指令。保修期为五年。固定 I/O DSP 应为 TesiraFORTÉ® DAN AI。
LPC2378 是多用途串行通信应用的理想选择。它集成了 10/100 以太网媒体访问控制器 (MAC)、具有 4 kB 端点 RAM 的 USB 全速设备、四个 UART、两个 CAN 通道、一个 SPI 接口、两个同步串行端口 (SSP)、三个 I 2 C 接口、一个 I 2 S 接口和一个外部存储器控制器 (EMC)。这种串行通信接口与片上 4 MHz 内部振荡器、32 kB SRAM、用于以太网的 16 kB SRAM、用于 USB 和通用用途的 8 kB SRAM 以及 2 kB 电池供电的 SRAM 相结合,使该设备非常适合通信网关和协议转换器。各种 32 位计时器、改进的 10 位 ADC、10 位 DAC、PWM 单元、CAN 控制单元以及多达 104 条快速 GPIO 线(其中最多 50 个边缘和最多 4 个电平敏感外部中断引脚)使这些微控制器特别适合工业控制和医疗系统。
240 MHz 双核 Tensilica LX6 微控制器,具有 600 DMIPS 集成 520 KB SRAM 集成 802.11b/g/n HT40 Wi-Fi 收发器、基带、堆栈和 LWIP 集成双模蓝牙(经典和 BLE) 4 MByte 闪存 板载 PCB 天线 超低噪声模拟放大器 霍尔传感器 10x 电容式触摸接口 32 kHz 晶体振荡器 3 x UART(Feather Arduino IDE 支持中仅默认配置两个,一个 UART 用于引导加载/调试) 3 x SPI(Feather Arduino IDE 支持中仅默认配置一个) 2 x I2C(Feather Arduino IDE 支持中仅默认配置一个) 12 x ADC 输入通道 2 x I2S 音频 2 x DAC 每个 GPIO 引脚上可用的 PWM/定时器输入/输出 带有 32 kB TRAX 缓冲区的 OpenOCD 调试接口 SDIO主/辅 50 MHz SD 卡接口支持
RFM42B/43B提供了高级无线电功能,包括RFM43B上的可调节功率 +13DBM和+1至 +20dBm以3DB步骤进行。RFM42B/43B的高水平集成水平可降低BOM成本,同时简化整个系统设计。RFM42B的行业领导 +20dBm输出功率可确保链接性能。其他系统功能,例如自动唤醒计时器,低电池检测器,64个字节TX FIFO和自动数据包处理降低了总体当前消耗,并允许使用较低的系统MCUS。一个集成的温度传感器,通用ADC,Power-On-Reset(POR)和GPIO进一步降低了整体系统成本和尺寸。直接数字传输调制和自动PA功率升压确保精确的传输调制和降低光谱传播,以确保遵守包括FCC,ETSI法规在内的全球法规。提供了易于使用的计算器,以快速配置无线电设置,简化客户的系统设计并减少上市时间。