在本文件中,“德勤”是指德勤咨询有限责任公司,德勤有限责任公司的子公司。请访问 www.deloitte.com/us/about 了解我们法律结构的详细描述。根据公共会计的规则和规定,某些服务可能无法提供给鉴证客户。本出版物仅包含一般信息,德勤不会通过本出版物提供会计、商业、财务、投资、法律、税务或其他专业建议或服务。本出版物不能替代此类专业建议或服务,也不应将其用作可能影响您业务的任何决策或行动的依据。在做出任何可能影响您业务的决定或采取任何可能影响您业务的行动之前,您应咨询合格的专业顾问。德勤对任何因依赖本出版物而遭受的损失概不负责。
摘要 — 近年来,量子计算取得了重大发展,并在许多应用领域确立了其霸主地位。虽然量子硬件可以通过云环境供公众使用,但仍需要一个强大而高效的量子电路模拟器来研究约束条件并促进量子计算发展,例如量子算法开发和量子设备架构探索。在本文中,我们观察到大多数公开可用的量子电路模拟器(例如 IBM 的 QISKit、Microsoft 的 QDK 和 Google 的 Qsim-Cirq)在量子比特数量增加时模拟速度慢且可扩展性差。为此,我们系统地研究了量子电路模拟(QCS)的缺陷,并提出了 Q-GPU,这是一个利用具有全面优化的 GPU 来实现高效且可扩展的 QCS 的框架。具体而言,Q-GPU 具有 i)主动状态幅度转移、ii)零状态幅度修剪、iii)延迟量子比特参与和 iv)无损非零状态幅度压缩。在九个代表性量子电路上的实验结果表明,Q-GPU 显著缩短了基于 GPU 的 QCS 的执行时间,缩短了 71.89%(加速 3.55 倍)。Q-GPU 还分别比最先进的 OpenMP CPU 实现、Google Qsim-Cirq 模拟器和 Microsoft QDK 模拟器快 1.49 倍、2.02 倍和 10.82 倍。
摘要 — GPU 被广泛用于加速机器学习工作负载的训练。随着现代机器学习模型变得越来越大,它们需要更长的时间来训练,从而导致更高的 GPU 能耗。本文介绍了 GPOEO,这是一种用于机器学习训练工作负载的在线 GPU 能量优化框架。GPOEO 通过采用新颖的在线测量、多目标预测建模和搜索优化技术来动态确定最佳能量配置。为了表征目标工作负载行为,GPOEO 使用 GPU 性能计数器。为了减少性能计数器分析开销,它使用分析模型来检测训练迭代变化,并且仅在检测到迭代偏移时收集性能计数器数据。GPOEO 采用基于梯度提升的多目标模型和局部搜索算法来找到执行时间和能耗之间的权衡。我们通过将 GPOEO 应用于在 NVIDIA RTX3080Ti GPU 上运行的两个 AI 基准测试套件中的 71 个机器学习工作负载来评估它。与 NVIDIA 默认调度策略相比,GPOEO 平均节能 16.2%,平均执行时间略有增加 5.1%。
环境和设备:· 环境温度范围................................. -10 至 40 摄氏度· 湿度................................................... <90%,无凝结· 海拔................................................... 所有规格均在海拔 < 2000m 处引用· 噪声................................................... < 50dBA @ 1m· 整体效率................................................... 85 至 91% 取决于型号· EMC................................................... 优于 EN55-022B· 机柜................................................... 镀锌钢,粉末涂层· 前面板................................................... 5U x 19”,阳极氧化铝· 机柜防护................................................... IP21· 仪表................................................... 数字读数输出输出安培、伏特(相间和相间中性线)、赫兹、千瓦和每相的功率因数。· CE 标志
摘要。DOT-PRODUCT是许多机器学习和科学计算算法中广泛使用的操作。最近,NVIDIA在现代GPU架构中引入了DOT-产品指令(DP2A和DP4A),目的是加速机器学习和科学计算应用程序。这些点 - 产品指令允许在时钟周期中计算多和添加指令,与常规的32位整数单元相比,有效地实现了更高的吞吐量。在本文中,我们表明DOT-产品指令也可以用于加速基质 - 型质子和多项式卷积操作,这些操作通常在基于量子后晶格后的密码学方案中发现。特别是我们提出了高度优化的Frodokem实现,其中矩阵 - 倍数通过点 - 产品指令加速。我们还提出了专门设计的数据结构,该结构允许使用DOT-产品指令来加速多项式卷积,从而有效地实现了Saber钥匙封装机制。拟议的Frodokem实施实现了4。每秒密钥交换操作比V100 GPU上的最先进的实施情况更高。本文还介绍了在GPU平台上的第一次实施,分别在RTX3080,V100和T4 GPU上实现了124,418、120,463和31,658密钥交换操作。由于基矩阵 - 多项式卷积操作是基于晶格的加密方案中最耗时的操作,因此我们提出的技术很可能有助于其他类似的算法。在各种GPU平台上提出的KEM的高吞吐量实现允许从服务器中填充重型计算(KEMS)。这对于许多新兴应用程序(如物联网和云计算)非常有用。
Entegris ® 、Entegris Rings Design ® 和其他产品名称是 Entegris, Inc. 的商标,如 entegris.com/trademarks 所列。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。
摘要 - 遵循其他关键安全行业(如汽车和航空电子产品)的趋势,太空领域正在见证车载计算绩效需求的增加。性能需求的提高来自航天器的控制和有效载荷部分,并呼吁高级电子系统能够在苛刻的空间环境的限制下提供高计算能力。在非技术方面,由于战略原因,必须在二手计算技术上获得欧洲独立性。在这个项目中,我们研究了嵌入式GPU在太空中的适用性,这些GPU在基于竞争激烈的欧洲技术的消费市场中的增殖表明,其每瓦的绩效比例显着提高。为此,我们对现有空间应用程序域进行分析,以确定哪些软件域可以从其使用中受益。此外,我们调查了嵌入式的GPU域,以评估嵌入式GPU是否可以提供所需的计算能力并确定需要解决其在空间中需要解决的挑战。在本文中,我们描述了该项目中遵循的步骤,以及从我们的分析中获得的结果摘要。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
摘要:我们报告了一种新的多GPU从头算,hartree- fock/密度功能理论实现将整体化为开源量子相互作用计算内核(快速)程序。详细介绍了电子排斥积分的负载平衡算法和多个GPU之间的交换相关性。进行了多达四个GPU节点进行的基准测试研究,每个节点包含四个NVIDIA V100-SXM2型GPU表明,我们的实力能够实现出色的载荷平衡和高平行的效率。对于代表性的培养基到大蛋白/有机分子系统,观察到的平行官方率在Kohn- -假基质形成中保持在82%以上,而对于核梯度计算,则保持高于90%。在所有经过测试的情况下,NVIDIA A100,P100和K80平台上的加速度也已经实现了高于68%的平行官方,这为大规模的初始电子结构计算铺平了道路。