背景:铁铁作用是一种不同的铁细胞死亡形式,是由于活性氧(ROS)的产生引起的严重脂质过氧化引起的。乳腺癌患者的生存与Rho鸟苷三磷酸酶水解酶(GTPase)活化蛋白6(ARHGAP6)的肿瘤抑制特性相关。这项研究研究了ARHGAP6对乳腺癌螺栓吞噬作用的影响和机制。方法:使用定量RT-PCR,Western印迹和免疫荧光染色,在基因表达数据集,癌组织样品和细胞中检测到ARHGAP6表达。ARHGAP6。使用5-乙基-2-脱氧尿苷(EDU)测定法测量细胞增殖,并使用LDH细胞毒性测定法测定细胞死亡率。As indicators of ferroptosis, Fe 2+ ion content, lipid ROS, glutathione peroxidase 4 (GPX4), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), prostaglandin-endoperoxide synthase 2 (PTGS2), solute car- rier family 7 member 11 (SLC7A11), and评估了酰基-COA合成酶长链家族成员4(ACSL4)水平。结果:在癌症组织和细胞中,ARHGAP6显然被下调。ARHGAP6的过表达降低了细胞增殖,细胞死亡升高和脂质ROS,降低了GPX4和SLC7A11,PTGS2,ACSL4和CHAC1增加,并抑制了癌细胞中的RhoA/Rock1和P38 MAPK信号。ARHGAP6敲低与ARHGAP6过表达相反的影响。ARHGAP6 mRNA水平与肿瘤组织中的铁凋亡指标呈正相关。p38 signaling抑制逆转了arhgap6敲低对逆转录病的影响,而rhoa/rock1信号抑制作用损害了arhgap6对p38 mapk信号传导的影响。在小鼠模型中,ARHGAP6以及诱导肌毒死剂RSL3合作的促进性铁氧作用增强并抑制了癌细胞的肿瘤生长。结论:这项研究表明,ARHGAP6通过通过RhoA/Rock1/p38 MAPK信号传递肿瘤来抑制乳腺癌的肿瘤生长。将ARHGAP6与诱导脂肪毒剂诱导剂相结合可能是乳腺癌治疗的有前途的治疗策略。
全基因组CRISPR筛选,这些基因和CAS9基因可以全面地搜索缺失基因的细胞群,并且可以搜索影响特定细胞表型的基因。在这项研究中,为了在肝脏中找到新的调节剂调节剂,我们将文库引入了人肝癌细胞系(HUH-7),并使用GPX4抑制剂选择诱导甲型铁毒性症,并揭示了大多数幸存细胞缺少DHCR7基因(图)。当实际产生和分析DHCR7缺陷的细胞时,发现DHCR7缺陷的细胞对各种氟凋亡诱导的刺激具有抗性,并且过氧化磷脂的产生是甲状腺毒剂的指标,这是抑制的。还发现在DHCR7缺陷型细胞中,底物7-脱氢胆固醇(7-DHC)会累积,并且7-DHC起源于自由基清除剂并保护磷脂氧化。此外,为了验证DHCR7抑制是否抑制了肝脏中与铁毒相关的病理,我们研究了DHCR7抑制剂在小鼠中的作用,并发现DHCR7抑制剂抑制了肝脏局部缺血再灌注 - 再灌注损伤。
缩写:AAC:腹主动脉肿块; CVB3:Coxsackie病毒B3; CYLD:囊肿症; DCM:扩张的心肌病; DM:糖尿病; DUSP1:双重特异性磷酸酶1; EGFR:表皮生长因子受体; ER:内质网; FSTL1:卵泡样蛋白1; GPX4:谷胱甘肽过氧化物酶4; HAUSP:疱疹病毒相关的泛素特异性蛋白酶; HIF-1α:低氧诱导因子-1α; I/R:缺血再灌注; JAMMS:JAB1/MPN/MOV34金属蛋白酶; KDM3A:赖氨酸特异性脱甲基酶3a; mettl3:类似甲基转移酶的3; MI:心肌梗塞; MIDYS:MIDYS家庭主题与含有新颖的配音家庭的泛素互动; MJD:Machado Joseph病蛋白; NAD +:烟酰胺腺嘌呤二核苷酸; OTU:卵巢肿瘤相关的蛋白酶;耳鼻蛋白:具有线性链接特异性的OTU去泛素酶; PAC:肺动脉连接; RHD:风湿性心脏病; RVH:右心肥大; SERCA2A:SARCO/内质网Ca2 + -ATPase; sirt:sirtuin; Slim1:骨骼肌lim蛋白1; STAT3:转录3的信号换能器和激活因子; T2DM:type2糖尿病; TAC:跨动脉缩空; TAK1:转化生长因子激活的激酶1; UCHS:泛素C末端水解酶; USP:泛素特异性蛋白酶; YB-1:Y-box结合蛋白-1。
缩写:SMA,α平滑肌肌动蛋白;AA,氨基酸;BME,Eagle基础培养基;BMP4,骨形态发生蛋白-4;BFP,蓝色荧光蛋白;CoQH2,还原辅酶Q;CHP,氢过氧化异丙苯;DR,耐药;EBSS,Earle平衡盐溶液;EGF,表皮生长因子;FBS,胎牛血清;eIF2,真核起始因子2α;FACS,荧光激活细胞分选术;FITC,异硫氰酸荧光素;GAPDH,3-磷酸甘油醛脱氢酶;GFP,绿色荧光蛋白;GSH,谷胱甘肽;GSSG,谷胱甘肽二硫化物;GPX4,谷胱甘肽过氧化物酶4;HGF,肝细胞生长因子;HPLM,人血浆样培养基; iRFP,近红外荧光蛋白;Mel-MPM,黑色素瘤导向模块化生理培养基;MPM,模块化生理培养基;NAD,烟酰胺腺嘌呤二核苷酸;NAMPT,烟酰胺磷酸核糖转移酶;NAMPTi,烟酰胺磷酸核糖转移酶抑制剂;NEAA,非必需氨基酸;NHDF,正常人真皮成纤维细胞;PI,碘化丙啶;ROS,活性氧;Se,亚硒酸盐;SLC3A2,溶质载体家族 3 成员 2;SLC7A11,溶质载体家族 7 成员 11;xCT,胱氨酸/谷氨酸转运蛋白
摘要:本研究通过全面的分子动力学(MD)仿真探讨了新型S-三嗪基于S-三嗪的MMP-10抑制剂的动态行为和结合稳定性。所研究的化合物,称为化合物(i),表现出有效的抗大肠癌活性(HCT-116; IC 50 =0.018μm)。从机械上讲,标题化合物(i)超过了参考MMP抑制剂NNGH对MMP-10(IC 50 =0.16μm),HCT-116细胞中的GSH耗尽(相对折叠降低= 0.81),使用适度的GPX4抑制作用,诱导的脂质过氧化物和1.32相对倍数。使用Gromacs计划进行100 ns进行MD模拟,以评估复合物的均方根偏差(RMSD),均方根均方根波动(RMSF),旋转半径(RG)(RG),溶剂可访问的表面积(SASA),SASA(SASA),配体相互作用网络,触点频率分析,触点和分子机械构成 - 型 - 分子机械范围(MM MM MM),阐明负责其抗直肠癌活性的分子原则。结果表明,化合物(i)在MMP-10活性位点具有稳定且一致的相互作用,该相互作用支持其有前途的抑制作用和在结直肠癌治疗中的前瞻性治疗应用。结直肠癌(CRC)是第三常见的恶性肿瘤,也是癌症相关死亡率的第四大原因。
铁凋亡是一种程序性细胞死亡的一种形式,其特征是细胞内亚铁离子水平升高和脂质过氧化增加。自2012年发现和表征以来,在理解铁凋亡的调节机制和病理生理功能方面取得了长足的进步。最近的发现表明,许多器官损伤(例如,缺血/再灌注损伤)和退化性病理(例如主动脉夹层和神经退行性疾病)是由铁毒性造成的。相反,铁凋亡不足与肿瘤发生有关。此外,最近的一项研究揭示了在生理条件下肌凋亡对造血干细胞的影响。The regulatory mechanisms of ferroptosis identified to date include mainly iron metabolism, such as iron transport and ferritinophagy, and redox systems, such as glutathione peroxidase 4 (GPX4)-glutathione (GSH), ferroptosis-suppressor-protein 1 (FSP1)-CoQ 10 , FSP1-vitamin K (VK),二氢易能酸酯脱氢酶(DhoDH)-COQ和GTP环氢酶1(GCH1) - 四氢异物蛋白酶(BH 4)。最近,越来越多的研究表明,表观遗传机制(尤其是DNA,RNA和蛋白甲基化)在铁铁作用中起着重要的调节作用。在这篇综述中,我们对迄今为止确定的铁吞作用的分子机制和调节网络进行了批判性分析,重点是DNA,RNA和蛋白甲基化的调节作用。此外,我们讨论了一些辩论的发现和未解决的问题,这些问题应该是该领域未来研究的重点。
摘要肺癌的发生依赖于细胞内的半胱氨酸来克服氧化应激。包括非小细胞肺癌 (NSCLC) 在内的几种肿瘤类型通过过表达胱氨酸转运蛋白 SLC7A11 上调 xc - 胱氨酸/谷氨酸反向转运蛋白 (xCT) 系统,从而维持细胞内半胱氨酸水平以支持谷胱甘肽合成。核因子红细胞 2 相关因子 2 (NRF2) 通过调节 SLC7A11 充当氧化应激抵抗的主要调节器,而 Kelch 样 ECH 相关蛋白 (KEAP1) 充当氧化反应转录因子 NRF2 的细胞质抑制因子。KEAP1/NRF2 和 p53 的突变会诱导 NSCLC 中的 SLC7A11 激活。细胞外胱氨酸对于提供对抗氧化应激所需的细胞内半胱氨酸水平至关重要。胱氨酸可用性中断会导致铁依赖性脂质过氧化,从而导致一种称为铁死亡的细胞死亡。xCT 的药理抑制剂(SLC7A11 或 GPX4)会诱导 NSCLC 细胞和其他肿瘤类型的铁死亡。当胱氨酸摄取受损时,细胞内的半胱氨酸池可以通过转硫途径维持,该途径由胱硫醚-B-合酶 (CBS) 和胱硫醚 g-裂解酶 (CSE) 催化。外源性半胱氨酸/胱氨酸和转硫途径参与半胱氨酸池和下游代谢物会导致 CD8 + T 细胞功能受损和免疫疗法逃避,从而削弱免疫反应并可能降低免疫治疗干预的有效性。细胞焦亡是一种以前未被认识的受调节细胞死亡形式。在由 EGFR、ALK 或 KRAS 驱动的 NSCLC 中,选择性抑制剂可诱导细胞焦亡和凋亡。靶向治疗后,线粒体内在凋亡途径被激活,从而导致 caspase-3 的裂解和活化。因此,gasdermin E 被激活,从而导致细胞质膜通透化和细胞溶解性焦亡(以特征性细胞膜膨胀为标志)。本文还讨论了 KRAS G12C 等位基因特异性抑制剂的突破和潜在的耐药机制。关键词溶质载体家族 7 成员 11 (SLC7A11);核因子红细胞 2 相关因子 2 (NRF2);铁死亡;焦亡;KRAS G12C 等位基因特异性抑制剂;非小细胞肺癌 (NSCLC)
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。
