在 GRCh37 之后发布的更新版本,包含了更多的改进,例如填补了序列间隙( gaps )、修正 了一些错误组装的区域、增加了着丝粒序列,并在某些区域增加了 alternate loci 来代表序列 的多样性。这些改进使得 GRCh38 在基因组分析中,尤其是在检测结构变异方面,比 GRCh37 具有更高的准确性和可靠性。 GRCh38 相比于 GRCh37 ,减少了一些 N (表示序列间隙或未注 释区域)的数量,增加了 GC 含量,并且扩大了外显子组的大小。
2020年4月8日访问了Clinvar数据库。变体用以下条件过滤:1)包括有效的grch38/hg38坐标2)标记为“临床分解”列的致病性,3)包含一个由列的串联来确定的唯一标识符,由列的“名称”,“名称”,“ rs#(dbsnp)”,“ rs#(dbsnp)”和“ variatiationId”。所有具有模棱两可的IUPAC代码的变体都被转换为具有非模棱两可碱基的单独条目,用于下游分析。按照以下步骤,Clinvar变体的总数总计为69,481。序列输入均为所有条目的安装和校正这些病原变体的格式。在Clinvar变体上运行PrimedSign后,候选Pegrna Designs
表1。从八个物种制备的无核能总RNA文库中检测到的%rRNA值和基因数量。通用的人/小鼠/大鼠参考RNA,牛胎盘RNA,番茄和小麦叶RNA以及从沉淀的绿藻细胞中提取的RNA和内部成年酵母菌培养物用作输入(每位图书馆100 ng)。每个库的数据分析使用了3000万读对(150 bp配对)。修剪大奖!v0.6.6,Star v2.6.1d,Samtools v1.9和farmaturecounts v2.0.1用于修剪,对齐,过滤/索引和读取计数分配。RRNA基因/外显子的分类及其读取是基于UCSC基因组浏览器的注释和retoMasker rRNA轨道的基础。 用于分析的参考基因组是组件GRCH38(H。SAPIENS),CRCM39(M。MUSCULUS),RNOR_6.0(R。NORVEGICUS),ARS-UCD1.2(B. Taurus),SL3.0,SL3.0,SL3.0(S. lycopersicum),IWGSC(iwgsc),IWGSC(iwgsc),iwgsc(iwgscim),chlamans,C。c. c. c. c. c. c. c. anasen nasunson。 Reinhardtii)来自Ensembl和Refseq的ASM18296V3(C. albicans)。 tpm,百万分的成绩单。RRNA基因/外显子的分类及其读取是基于UCSC基因组浏览器的注释和retoMasker rRNA轨道的基础。用于分析的参考基因组是组件GRCH38(H。SAPIENS),CRCM39(M。MUSCULUS),RNOR_6.0(R。NORVEGICUS),ARS-UCD1.2(B. Taurus),SL3.0,SL3.0,SL3.0(S. lycopersicum),IWGSC(iwgsc),IWGSC(iwgsc),iwgsc(iwgscim),chlamans,C。c. c. c. c. c. c. c. anasen nasunson。 Reinhardtii)来自Ensembl和Refseq的ASM18296V3(C. albicans)。tpm,百万分的成绩单。
参考基因组是比较个人基因组以推断临床变异的基线标准。广泛使用的参考基因组 GRCh38 包含间隙和未解析的碱基,尤其是在复杂区域,这可能会影响变异的发现。相比之下,无间隙端粒到端粒 CHM13 (T2T-CHM13) 参考基因组可用于评估基因组的困难区域。光学基因组图谱 (OGM) 是一种用于结构变异识别的成像技术,与传统细胞遗传学方法相比,其分辨率有所提高。我们的研究展示了 T2T-CHM13 参考基因组在复杂区域中增强结构变异 (SV) 检测的实用性。我们通过两个临床病例说明了这一点,其中与 T2T-CHM13 的改进比对导致关键 SV 的置信度得分显著提高。我们展示了更新后的 T2T-CHM13 参考的临床诊断结果有所改善,并提倡采用它。
采集了 30 位捐献者的唾液样本,其中 90% 的分析前 DNA 质量 >2 µg。从 27 个样本中提取了 HMW DNA,其中 93% 的产量 >500 ng。提取后,使用 Qubit dsDNA BR 检测试剂盒对 DNA 进行定量,并使用 Femto Pulse 系统(安捷伦科技公司)进行表征。使用 SMRTbell ® 制备试剂盒 3.0 为部分样本制备 HiFi 文库,并使用 SPRQ™ 化学方法在 Revio 系统上进行测序。每个样本都在一个 Revio SMRT 测序池上进行测序。表 1 总结了五个代表性样本的测序数据。这些样本产生了 4.7 到 15.9 µg 的 HMW DNA。HiFi 测序产量为 119 到 133 Gb 的 HiFi 数据,每个基因组的覆盖率为 27 到 40 倍,足以进行全面的 WGS 变异检测。 75% 到 95% 的读数映射到人类参考基因组 (GRCh38)。
2.0自定义高强度公式,一种单步库制备方法,用于脱离人类样品基因型插补的方法。ExpressPlex 2.0自定义高强度公式用于在四个不同的总质量输入处处理两个单独的人基因组DNA,从而产生一个归一化的8个PLEX库池。在NextSeq 2000 P3上运行2 x 150 bp,将Expressplex库测序为≥2000万个配对末端读数。对每个样品的配对末端读取均与GRCH38人参考基因组对齐,确定了SNP调用的精度和准确性22。使用默认设置执行的插补的开源瞥见管道。我们的结果表明,AxpressPlex 2.0定制高强度公式的常规低通WGS应用程序的实用性,在其中我们表征了参考样品集合中的多重均匀性和基因型插定精度。
Lexique 1000G:1000基因组项目(第3阶段)2G:二分法遗传ACMG:美国医学遗传学与基因组学院AD:自染色体占主导地位AFR:非洲/非裔美国人AMR:Ambixed Amerry:Ambixed Amer AR:Autosomal recssessive ADM:与自动构成adp的自动质体占主导地位:自动构成的Autosals Admanal Aldnalal Allsalal Armanal Armanal alnalalal Alend of tosal alnalalal alnalalal alnalalal solidal: base pair CDS: CoDing Sequence CNV: Copy Number Variation DDD: Deciphering Developmental Disorders DECIPHER: DatabasE of genomic varIation and Phenotype in Humans using Ensembl Resources DEL: Deletion DGV: Database of Genomic Variants DNA: DesoxyriboNucleic Acid DUP: Duplication ENCODE: Encyclopedia of DNA Elements EUR : Europe ExAC: Exome Aggregation Consortium GenCC: Gene Curation Coalition GH: GeneHancer GRCh37: Genome Reference Consortium Human Build 37 GRCh38: Genome Reference Consortium Human Build 38 HI: Haploinsufficiency hom: homozygous htz: heterozygous ID: Identifier
非常短的串联重复序列在基因组分析中具有重要的遗传、进化和病理意义。本文,我们对 GRCh38 中的串联单核苷酸/二核苷酸/三核苷酸重复序列 (MNR/DNR/TNR) 进行了普查,我们统称其为“多束”。在人类基因组中,1.444 亿个核苷酸(4.7%)被多束占据,0.47 百万个单核苷酸被鉴定为多束铰链,即串联多束的断裂点。对普查的初步探索表明,AAC 多束的多束铰链位点和边界可能比其他多束区域具有更高的映射错误率。此外,我们揭示了近百种基因组特征的多束富集景观。我们发现 MNR、DNR 和 TNR 在杂项基因组特征(尤其是 RNA 编辑事件)的位置富集方面表现出明显差异。非规范和 C-to-U RNA 编辑事件在 MNR 内部和/或相邻处富集,而所有类别的 RNA 编辑事件在 DNR 中代表性不足。A-to-I RNA 编辑事件在多段中通常代表性不足。MNR 相邻范围内非规范 RNA 编辑事件的选择性富集为其真实性提供了负面证据。为了实现与多段相关的类似位置富集分析,我们开发了一个软件 Polytrap,它可以处理 11 个参考基因组。此外,我们将四种模式生物的多段编译成 Track Hub,它可以集成到 USCS Genome Browser 中作为官方轨道,以方便多段可视化。
1. 通过 UCSC 基因组浏览器 ( https://genome.ucsc.edu/ ) 可获得用于设计两个 gRNA 的目标 DNA 序列。a. 选择感兴趣的基因组版本。在我们的例子中,使用的是“人类 GRCh38/hg38”。b. 根据已知的倒位断点 1 的位置,标记断点前 100-150 bp 到断点后 100–150 bp 范围内的基因组区域。例如,如果断点 1 位于 chr3:2,920,305,则在 UCSC 基因组浏览器搜索框中输入“chr3:2,920,205–2,920,405”以标记所需的染色体区域,然后单击“Go”。c. 在 UCSC 基因组浏览器工具栏上选择“查看”,然后单击“DNA”选项。d.在新窗口中,单击“获取 DNA”以获得准确的 DNA 序列。这是使用 CRISPOR 算法设计 gRNA 引物所需的序列(见下面的步骤 2a)。e. 对倒位的断点 2 重复步骤 1a-1d。2. 要设计 gRNA,请使用 CRISPOR 算法(http://crispor.tefor.net/):a. 输入从步骤 1d 获得的断点 1 的 DNA 序列。确保参考基因组与 UCSC 浏览器(步骤 1a)中使用的基因组相匹配,然后选择可通过转染载体编码的 Cas9 酶类型识别的 Protospacer Adjacent Motif (PAM)。如果转染载体表达 SpCas9,则选择 20 bp-NGG PAM 格式。单击“提交”以获得针对模板 DNA 的候选 gRNA 序列。b. CRISPOR 算法默认按特异性从高到低对候选 gRNA 序列进行排序,因为这是关键参数。从新页面上出现的候选 gRNA 列表中,选择具有最高麻省理工学院 (MIT) 和切割频率确定 (CFD) 特异性得分的指导序列(Doench 等人,2016 年;Hsu 等人,2013 年;Tycko 等人,2019 年)。这些分数根据以下方面评估候选 gRNA
基因组坐标位置渗透载体表型基因覆盖g.8003996666delc(Chr17,grch38)外显子3高3个高note note note note note note note note 15倍变体解释:p.ala83valfsx84在CCDC40中的p.ala83valfsx84变异,先前在19个雄性和7型杂质的helel helesozygous and pc n hymozygous and pc contia和7 compio and syzygous and;在1个纯合受影响的亲戚中与疾病隔离(Becker-Heck 2011 PMID:21131974,Nakhleh 2012 PMID:22499950,Antony 2013 PMID:23255504,Zariwala,2013 PMID:23891469)。该变体已在gnomad(http://gnomad.broadinstitute.org)中鉴定出0.074%(860/1167354)的非欧洲欧洲染色体。但是,此频率足够低,可以与隐性等位基因频率保持一致。在Clinvar中也报道了这种变体(变体ID 31069)。该变体被预测会引起移架,从而改变蛋白质的氨基酸序列,从位置83开始,并导致下游的过早终止密码子84氨基酸。然后预测这种改变会导致截短或不存在的蛋白质。功能研究表明,CCDC40功能的丧失导致纤毛结构和运动异常(Becker-Heck 2011 PMID:21131974)。总而言之,该变体符合标准,该标准被归类为常染色体隐性原发性睫状运动障碍的致病性。ACMG/AMP标准应用:PVS1,PM3_VERYSTRONG,PM2_SUPPORTING,PP1。疾病信息:原发性睫状运动障碍是一种罕见的遗传病,在遗传上是异质的。它与复发性呼吸道感染,内脏异常定位以及不育有关。这是由于器官和组织衬里发现的纤毛和鞭毛的运动性异常。呼吸道感染,粘液清除率降低,鼻塞和慢性咳嗽始于幼儿,可能导致支气管扩张。Situs Inversus Totalis是所有内脏器官的镜像逆转,在40-50%的个体中发现。雌性运动障碍的雄性由于精子运动异常而经常是不育的,而患有这种疾病的女性有时可能是由于输卵管中的纤毛异常引起的。其他症状可能包括大脑中的复发性耳朵感染和脑积水。Pathogenic variants in CCDC40 contribute to 3-4% of primary ciliary dyskinesia (Medline Plus: https://medlineplus.gov/genetics/condition/primary-ciliary-dyskinesia, GeneReviews: https://www.ncbi.nlm.nih.gov/books/NBK1122).家族性和生殖风险疾病患病率(估计)载体频率(估计)生殖风险(估计)1/16000(https://medlineplus.gov/genetics/conditics/condition/primary-ciliary-ciliary-ciliary-dyskinesia)
