[纸质评论摘要] 1。文章内容本文通过使用TOL2 transposon将导向RNA(GRNA)敲入基因组来建立了一种方便地创建条件敲除小鼠的方法。 2.纸质评论1)为研究目的而开创性和独创性,使用特定周期和组织特异性的条件敲除小鼠至关重要,以分析单个水平的基因功能。但是,传统的CRE/LOXP方法需要多种小鼠菌株的交配,这需要时间和精力。在此背景下,申请人结合了三个现有系统:转座系统,CRE/LOXP系统和CRISPR/CAS9系统,以建立一个系统,允许在短时间内更加方便地创建有条件的淘汰小鼠。这种观点值得认可。 2)社会意义从这项研究中获得的主要结果如下。 1。cag-creer小鼠和rosa-lsl-cas9敲入小鼠被体外受精,质粒和TOL2转座子mRNA,其在TOL2识别序列中夹在小鼠酪氨酸酶的GRNA之间的序列,将Tyr GRNA插入了Born Born Rece的6.3%-13.6%中。 2。当他对出生的小鼠施用他莫昔芬时,在某些情况下观察到头发颜色的变化有限。 3。在三只小鼠(TG1、2、3)中观察到缺失和插入3.1%,6.8%和7.5%的酪氨酸酶基因。 4。当F0雄性小鼠交配时,11.1%的F1小鼠显示GRNA盒传播。如上所述,申请人已经建立了一个系统,该系统允许在短时间内更方便,更简单地创建有条件的敲除小鼠。可以说这是一项有用的研究发现,可以加速个人水平的基因的功能分析。 3)在这项研究中,使用T7分析和深层测序分析了GRNA的基因组裂解,并使用PCR或Southern印迹分析了下一代小鼠中GRNA盒的传播。这种方法是在足够的分子生物学实验技术的支持下进行的,这表明申请人的知识和技术技能在研究方法上足够高,同时可以看出,这项研究是在非常谨慎的准备中进行的。
尽管基于 CRISPR-Cas9 的技术得到了快速而广泛的应用,但用于调节剂量、时间和精度的便捷工具仍然有限。基于使用合成肽核酸 (PNA) 以异常高的亲和力结合 RNA 的方法,我们描述了向导 RNA (gRNA) 间隔区靶向或“反间隔区”PNA,作为以序列特异性方式调节细胞中 Cas9 结合和活性的工具。我们证明 PNA 可以快速有效地以低剂量靶向复合 gRNA 间隔区序列,并且不受序列选择性 Cas9 抑制的设计限制。我们进一步表明,短 PAM 近端反间隔区 PNA 可实现有效的切割抑制(减少超过 2000 倍),并且 PAM 远端 PNA 可改变 gRNA 亲和力以促进靶向特异性。最后,我们应用反间隔物 PNA 来对两个 dCas9 融合系统进行时间调控。这些结果提出了一种新颖的合理核蛋白工程方法,并描述了一种可快速实施的 CRISPR-Cas9 调节反义平台,以提高应用的时空多功能性和安全性。
2019 1。Cunningham-Bryant,D.,Sun,J.,Fernandez,B。和Zalatan,J.G。CRISPR-CAS介导的酵母转录动力学的化学控制。Chembiochem。6月14日; 20(12):1519–1523。应用:使用GRNA与MS2结构域的诱导CRISPRA募集包含融合到诱导型激活剂和DCAS9的MS2外套蛋白的复合物。2。Taghbalout,A。等。通过Casilio-Me介导的RNA引导的甲基胞苷氧化和DNA修复途径的RNA引导的偶联增强了基于CRISPR的DNA去甲基化。自然通讯。10(4296)。doi.org/10.1038/S41467-019-12339-7应用:使用具有MS2结构域的GRNA,DCAS9,DCAS9和MS2涂层蛋白融合到DNA脱甲基化结构域。3。Tran,N.T。等。通过Cas9与同源重组因子的关联增强精确基因编辑。遗传学的前沿。10(365)。doi:10.3389/fgene.2019.00365应用:使用具有MS2域的GRNA以及Cas9和MS2涂层蛋白融合到同源性修复(HDR)的增强子。
虽然存在多种研究 CRISPR 脱靶 (OT) 编辑的方法,但在临床相关编辑过程后,很少有方法在原代细胞中进行过头对头比较。因此,我们在体外造血干细胞和祖细胞 (HSPC) 编辑后比较了计算机模拟工具 (COSMID、CCTop 和 Cas-OFFinder) 和经验方法 (CHANGE-Seq、CIRCLE-Seq、DISCOVER-Seq、GUIDE-Seq 和 SITE-Seq)。我们使用 11 种与 Cas9 蛋白复合的不同 gRNA(高保真 [HiFi] 或野生型版本)进行编辑,然后对通过计算机模拟和经验方法确定的指定 OT 位点进行靶向下一代测序。我们平均每个向导 RNA (gRNA) 识别出少于一个 OT 位点,使用 HiFi Cas9 和 20-nt gRNA 生成的所有 OT 位点都可通过除 SITE-seq 之外的所有 OT 检测方法识别。这导致大多数 OT 提名工具具有高灵敏度,并且 COSMID、DISCOVER-Seq 和 GUIDE-Seq 获得了最高的阳性预测值 (PPV)。我们发现经验方法无法识别生物信息学方法未识别的 OT 位点。这项研究支持可以开发出既能保持高灵敏度又能保持 PPV 的精细生物信息学算法,从而能够更有效地识别潜在的 OT 位点,而不会影响对任何给定 gRNA 的彻底检查。
CRISPR 介导的基因扰动研究的成功高度依赖于 gRNA 的质量,并且已经开发了几种工具来实现最佳的 gRNA 设计。然而,这些工具并不都适用于最新的 CRISPR 模式或核酸酶,也没有提供全面的注释方法或用于高级 CRISPR 应用的可扩展性。在这里,我们介绍了一个新的 R 包生态系统,它能够为多种 CRISPR 技术实现高效的 gRNA 设计和注释,包括 CRISPR 敲除、CRISPR 激活 CRISPR 干扰和 CRISPR 碱基编辑。核心包 crisprDesign 提供了一个全面、用户友好且统一的界面,可通过几种比对方法添加靶向和脱靶注释、丰富的基因和 SNP 注释以及十几个靶向和脱靶活动分数。这些功能适用于任何 RNA 或 DNA 靶向核酸酶,包括 Cas9、Cas12 和 Cas13。我们通过为三个案例研究设计最佳 gRNA 来说明我们工具的普遍适用性:使用碱基编辑器 BE4max 平铺 BRCA1 的 CRISPRbe 库、使用 CasRx 平铺 CD46 和 CD55 的 RNA 靶向库以及使用 CRISPRa 激活 MMP7。我们的 R 软件包套件是开源的,并通过 Bioconductor 项目部署,以方便 CRISPR 社区使用它们。
目前正在研究各种基因编辑方法,每种方法的工作原理略有不同。例如,我们将讨论 CRISPR Cas9,它使用两个核心组件。第一个是一小段向导 RNA (gRNA),它可以找到要编辑的 DNA 序列。第二个组件是一种称为 Cas9 酶或细胞核的蛋白质,它能够在 gRNA 找到的目标 DNA 位置进行编辑。一旦编辑发生,细胞就会发生自然修复过程,使 DNA 改变永久化。
CRISPR/CAS能够同时瞄准多个基因座(多重)的能力是改变植物育种的游戏规则。多路复用不仅会加速性格金字塔,而且还可以揭示功能冗余所隐藏的特征。此外,多路复用增强了基于DCAS的可编程基因表达,并实现了类似级联的基因调节。然而,包含串联阵列导向RNA(GRNA)的多重构建体的设计和组装需要无疤的克隆,并且由于存在重复序列而仍然很麻烦,从而阻碍了更广泛的使用。在这里,我们介绍了软件辅助克隆平台Goldenbraid(GB)的全面扩展,其中除了其多基因克隆软件之外,我们将新的工具集成了新的工具,用于基于IIS的易于且六个串联阵容的GRNA,使用Cas9和cas12a,使用GRNA-trees-trees-trees-crrna-crrrna-crrrna和crrrnna crrrnna crrrnna crrrnna crrrna carrna-crrrna crrrna cas12a。作为新工具的应力测试,我们组装并用于农杆菌介导的稳定转化A 17 cas9-grnas构造,靶向烟草中的Squamosa-promoter结合蛋白样(SPL)基因家族的子集。14个选定的基因是miR156的靶标,因此在少年到成年和营养至生殖相变中可能起重要作用。使用17个grnas构建体,我们生成了一组无Cas9的SPL编辑的T 1植物,该植物携带了多达9个双重突变,并显示出叶少年和更多的分支。GB4.0 Genome Edition纳入了新的基于Web的工具和随附的DNA零件集合,为植物基因组工程提供了多合一的开放平台。使用荧光素酶lyanum lycopersicum mtb促进剂或Agrobacterium tumefaciens Nopaline benthase prospermers inice inice inice Amamaine inice Amamaine in NiceAtient在NICAPASE中,NICAPASE PROSSITER in NICAPASE in NICAPASE in NICAPASE in NICAPASE in NICAPASE in NICAPASE in NICASIEN中,NICAIN中的使用单个和多重GRNA的GB组装DCAS9和基于DCAS12A的CRISPR/CAS激活剂和阻遏物使用单一和多路复用GRNA的功能。使用单个和多重GRNA的GB组装DCAS9和基于DCAS12A的CRISPR/CAS激活剂和阻遏物使用单一和多路复用GRNA的功能。
•含有Cas9和GRNA的纳米配方,将外源喷涂到感染植物上。•核糖核蛋白(RNP)络合物的递送,该复合物靶向特定细菌毒性基因HRPX,HRPG,HRPB和HOPP1。•用于不同疾病的GRNA复合物的个体或组合。•所提出的技术靶向病原体毒力因子,以防止细菌枯萎病,导致小米的xanthomonas oryzae pv oryzae(XOO)在水稻上,细菌斑点,引起丁香肌pv。番茄dc3000在拟南芥和细菌枯萎病上,在马铃薯上引起拉尔斯托尼亚溶剂。•RNPS纳米配方具有增强的渗透和效率。•将RNP应用的管道和SOPS靶向细菌中的其他基因
CRISPR/Cas9 已成为斑马鱼基因组编辑的有力工具,它允许使用 DNA 模板和同源定向修复 (HDR) 快速产生功能丧失突变和特定等位基因的敲入。我们检查了合成的、化学修饰的 gRNA 的效率,并证明与重组 Cas9 蛋白结合可诱导插入缺失和大型基因组缺失。我们开发了一种体内遗传检测方法来测量 HDR 效率,并利用该检测方法来测试改变模板设计对 HDR 的影响。利用合成的 gRNA 和线性 dsDNA 模板,我们成功地在多个基因组位点进行了荧光团的敲入,并证明了以高效率通过种系传递。我们证明合成的 HDR 模板可用于敲入细菌硝基还原酶 (ntr),以促进特定细胞类型的谱系消融。总的来说,我们的数据证明了结合合成 gRNA 和 dsDNA 模板在体内进行同源定向修复和基因组编辑的实用性。