衰老是一种与细胞老化相关的过程,由不同的应激引发,其特征是分泌各种炎症因子,称为衰老相关分泌表型 (SASP)。在这里,我们提出证据表明,炎症小体传感器 NLRP1 是体外和体内辐射诱导衰老的关键介质。NLRP1 炎症小体通过以 Gasdermin D (GSDMD) 依赖的方式调节 p16、p21、p53 和 SASP 的表达来促进衰老,因为在 NLRP1 不足或 GSDMD 抑制的情况下,这些反应会降低。从机制上讲,NLRP1 炎症小体在细胞质 DNA 传感器 cGMP-AMP (cGAMP) 合酶 (cGAS) 下游被激活,以响应基因组损伤。这些发现为抑制 NLRP1 炎症小体-GSDMD 轴以治疗衰老驱动的疾病提供了理论依据。
Gasdermin(GSDM)蛋白家族包括GSDMA/B/C/D,GSDME(DFNA5)和DFNB59(PEJVAKIN,PJVK)(1)。这些关键分子在刺穿细胞膜,释放免疫因子和诱导细胞死亡方面起着关键作用(1,2)。GSDM穿孔是由caspase和Granzymes(GZMS)介导的,它通过浮游性信号通路触发,并在针对病原体和癌症的免疫防御中持有关键的显性(2)。除DFNB59外,所有保守的蛋白质都包含N末端打孔域和C末端自抑制域(3)。在正常条件下,这些蛋白质通过域相互作用聚集,抑制GSDM的穿孔功能(3)。通过致病或破坏性信号,caspase或GZMS裂解GSDM激活后,将其分为N末端和C末端段(4)。这些片段然后寡聚,在细胞膜中形成毛孔,从而释放了炎性分子和细胞凋亡(4,5)。凋亡(6,7)。它突然表现出来,与其他程序性细胞死亡机制相比,引起了炎症反应的增强(8)。在2015年,发现了caspase-1将GSDMD分割为N末端和C末端结构域,从而揭示了凋亡过程(9)。GSDMD的自由N末端结构域在细胞膜中形成通道,
非规范式浮游物质是一种信号传导,对于抗胞质革兰氏阴性细菌的细胞防御至关重要。人类非规范式浮游路径的关键步骤涉及在该复合物中释放caspase-4的蛋白水解活性。caspase-4通过裂解Gasdermin-D(GSDMD)引发炎症,从而诱导炎症反应。但是,激活caspase-4并控制其裂解底物的能力的分子机制仍然很差。caspase-11,caspase-4的鼠类对应物,通过形成二聚体在D285时以D285的形式裂解GSDMD,从而获得了非规范性渗透性的蛋白酶活性。这些切割事件通过NLRP3 - ASC - caspase-1轴触发信号传导,导致Pro-IL-1β细胞因子前体的下游裂解。在这里,我们表明caspase-4第一个二聚体在两个位点(D270和D289)在间接头上的两个位置进行自我切割,以获取完整的蛋白水解活性,裂解GSDMD,并诱导细胞死亡。令人惊讶的是,D289处的caspase-4二聚体和自切解产生了直接裂解pro-IL-1β的caspase-4 p34/p9蛋白酶,从而独立于原代人髓细胞和上皮细胞中的NLRP3炎症体,从而导致其成熟和分泌。我们的研究因此阐明了caspase-4的浮游生物和鉴定为caspase-4的自然底物的关键分子事件。
听力损失相关的蛋白质气体E(GSDME)是继发性坏死的效应因子,已在新的编程细胞死亡途径(PCD)中鉴定出来。GSDME表观遗传沉默和突变导致癌症组织中有障碍。 此外,GSDME上调抑制了肿瘤的增殖和菌落形成能力,并降低了淋巴转移的发生率,表明GSDME可以充当肿瘤抑制器。 在这里,我们专注于GSDME介导的PCD的分子机制,并试图揭示该细胞死亡途径和凋亡,自噬,GSDMD介导的凋亡之间的串扰。 此外,我们得出的结论是GSDME的抗癌活性包括形成可渗透的膜和触发抗癌免疫力。 因此,GSDME可能成为预防癌症和治疗的新目标。GSDME表观遗传沉默和突变导致癌症组织中有障碍。此外,GSDME上调抑制了肿瘤的增殖和菌落形成能力,并降低了淋巴转移的发生率,表明GSDME可以充当肿瘤抑制器。在这里,我们专注于GSDME介导的PCD的分子机制,并试图揭示该细胞死亡途径和凋亡,自噬,GSDMD介导的凋亡之间的串扰。此外,我们得出的结论是GSDME的抗癌活性包括形成可渗透的膜和触发抗癌免疫力。因此,GSDME可能成为预防癌症和治疗的新目标。
抽象的人牙纸浆干细胞移植已被证明是脊髓损伤的有效治疗策略。然而,人类牙髓干细胞分泌组是否可以在脊髓损伤后有助于功能恢复。在本研究中,我们建立了一种基于体重下降的撞击损伤,然后腹膜内的大鼠模型向大鼠注射来自人类牙髓干细胞的条件培养基。我们发现,条件培养基有效地促进了大鼠脊髓损伤的感觉和运动功能的恢复,小胶质细胞刺病标记物的表达降低了NLRP3,GSDMD,CASPASE-1和INTREUUKIN-1β,并促进了轴突结束,并促进了肌蛋白的再生,并促进了Glial Scars的形成。此外,在脂多糖诱导的BV2小胶质细胞模型中,通过抑制NLRP3/CASPASE-1/interleukin-1β途径,从人牙浆干细胞中调节培养基免受凋亡。这些结果表明,来自人类牙髓干细胞的条件培养基可以通过抑制NLRP3/caspase-1/interleukin-1β途径来减少小胶质细胞的凋亡,从而促进脊髓损伤后神经功能的恢复。因此,来自人类牙髓干细胞的条件培养基可能成为脊髓损伤的替代疗法。关键词:bv2;条件培养基;牙髓干细胞; GSDMD;小胶质细胞;神经炎症; nlrp3;凋亡;脊髓损伤
ha,ch或cha。24小时后,收集细胞并用PBS彻底洗涤。细胞颗粒被加入RIPA裂解缓冲液(由上海Biyuntian Biotechnology提供),并将裂解物离心以提取蛋白质。蛋白质浓度由BCA蛋白测定试剂盒确定。接下来,进行蛋白质电泳,然后将蛋白质转移到硝酸纤维素膜上。随后,膜在室温下使用5%BSA溶液进行1小时进行阻塞。之后,将膜与针对各种靶蛋白的特异性抗体在4°C下孵育过夜。然后用PBS洗涤膜,并在室温下用适当的抗兔或抗小鼠IgG抗体处理1小时。使用
基因组结构变异(SV)是人类遗传多样性的主要来源。尽管许多研究探索了全球人群的SV多样性及其潜在影响1-3,但需要使用模型系统验证来确认报告的基因型 - 表型关联。在这里,通过长阅读的945个汉族基因组的测序,我们确定了111,288个SV,包括24.56%的未报告变体,许多人预测在功能上很重要。我们的分析揭示了汉族人群中这些SV的多方面起源,大约有24%出现在现代人类的共同祖先中。通过整合人口水平的表型,代谢和免疫学数据以及两个人性化的小鼠模型,我们证明了两种SVS的因果关系:一项SV出现在现代人类和尼安德萨省的共同祖先中表型和先天免疫。这些表型中的某些表型以前是未报告的,并且在小鼠敲除实验中是不可培养的表型。我们的结果表明,GSDMD中的SV可以用作快速且具有成本效益的预测生物标志物,用于评估多个器官损伤的GSDMD介导的凋亡,包括顺铂诱导的急性肾脏损伤。虽然最初在han中鉴定出来,但从人到小鼠的功能保护,但在包括HAN在内的非非洲人群中的积极选择的信号,以及与多种疾病风险的关联表明,这两种SV可能都会影响许多非非洲人群的局部适应性,表型多样性以及疾病的易感性。
癌症是全球重要的死亡原因,癌症治疗主要类型仍为手术、化疗和放疗,免疫治疗正在成为重要的癌症治疗手段。细胞焦亡是伴随炎症反应的一种程序性细胞死亡,本文就肿瘤中细胞焦亡的最新研究进展作一综述。细胞焦亡自1986年被发现,直至最近才被公认为是由GSDM家族蛋白介导的程序性细胞死亡。细胞焦亡的分子途径依赖于炎症小体介导的caspase-1/GSDMD通路(经典通路)和非经典通路caspase-4/5/11/GSDMD通路,其他通路包括caspase3/GSDME。细胞焦亡是一把双刃剑,与肿瘤免疫微环境密切相关。一方面,细胞焦亡产生慢性炎症环境,促使正常细胞向肿瘤细胞转变,帮助肿瘤细胞实现免疫逃逸,促进肿瘤生长和转移;另一方面,一些肿瘤细胞治疗可诱导细胞焦亡,这是一种非凋亡的细胞死亡形式,同时释放炎症分子,促进淋巴细胞募集,增强免疫系统杀伤肿瘤细胞的能力。随着免疫治疗的出现,细胞焦亡已被证明可以增强免疫检查点抑制剂的抗肿瘤疗效。一些抗肿瘤药物,如化疗药物,也可以通过细胞焦亡途径发挥抗肿瘤作用。细胞焦亡作为一种程序性细胞死亡方式,近年来一直是研究的重点,细胞焦亡与肿瘤及肿瘤免疫的关系备受关注,但其具体机制仍存在一些问题有待解答。对细胞焦亡的进一步研究将有助于开发新的抗肿瘤疗法,具有很大的临床前景。
缩写:ALP,碱性磷酸酶;ASC,含 CARD 的凋亡相关斑点样蛋白;CARD,胱天蛋白酶活化和募集结构域;CAPS,冷热蛋白相关周期性综合征;CINCA,慢性婴儿神经皮肤关节综合征;DAMPs,危险相关分子模式;DLBCL,弥漫性大 B 细胞淋巴瘤;ESR,红细胞沉降率;FCAS,家族性冷自发炎综合征;GSDMD,胃蛋白酶 D;IL-1R。IL-1 受体,IL-1RA;IL-1 受体拮抗剂,MGUS;意义不明确的单克隆丙种球蛋白病,MWS;马克-韦尔斯综合征,MYD88;髓系分化原发反应基因 88,NLR;NOD 样受体,NLRC4; NLR 家族胱天蛋白酶募集结构域含 4,NLRP3;NLR 家族,含吡啶结构域 3;NOD,核苷酸结合寡聚化结构域;NOMID,新生儿发病多系统炎症疾病;PGA,医生整体评估;
目的:败血症引起的肺损伤(SLI)是败血症的严重并发症。全适中,一种新型的炎性程序性细胞死亡形式,尚未在SLI中进行全面研究。我们的研究旨在通过生物信息学和体内实验筛选和验证SLI中全腹病的特征基因。方法:与SLI相关的数据集从NCBI基因表达式综合(GEO)数据库下载。鉴定差异表达的SLI基因(DEG)被鉴定出来,并与设置的全全变基因相交,以获得与全全变(Span_Degs)相关的DEG。然后,基于Span_degs进行了蛋白质 - 蛋白质相互作用(PPI)网络和功能富集分析。SVM-REF,LASSO和RandomForest三种算法被合并,以识别签名基因。进行了拨号图和ROC曲线以预测诊断值。免疫浸润分析,相关分析和差异表达分析用于探索特征基因的免疫特性,相关和表达水平。最后,进行了H&E染色和QRT-PCR以在体内实验中进行进一步验证。结果:通过与277个全全变基因相交的675摄氏度来鉴定二十四个Span_degs。通过三种机器学习算法鉴定出四个签名基因(CD14,GSDMD,IL1β和FAS),这些机器学习算法在SLI组中高度表达,并且在诊断模型中具有很高的诊断值。结论:CD14,FAS和IL1β可能是全全变的特征基因,以驱动SLI的进展并参与调节免疫过程。此外,免疫浸润分析表明,SLI组的大多数免疫细胞和免疫相关功能都比对照组中的功能高,并且与签名基因密切相关。最后,已经证实,盲肠结扎和穿刺(CLP)小鼠在肺组织中显示出显着的病理损害,并且CD14,IL1β和FAS的mRNA表达水平显着高于假手术组。关键字:败血症,肺损伤,全全变,机器学习,免疫渗透分析