急性髓系白血病 (AML) 是一种造血系统恶性肿瘤,包含不同的遗传亚型,但具有分化停滞的共同特征。在异常造血中,克服分化阻滞已成为一种有吸引力的治疗策略。在对遗传上不同的 AML 细胞系进行筛选时,观察到组蛋白去乙酰化酶抑制剂 (HDACis) 导致髓系分化标志物 CD11b 表达上调。这些导致细胞形态发生变化、增殖受阻和细胞周期停滞在 G1 期。为了深入了解这些化合物的作用机制,我们计划制备不含锌结合基序的无活性探针。然而,这些化合物出乎意料地仍然能够启动分化,尽管是通过不同的靶标和 G2 停滞。后续的 RNA 测序研究支持 HDACis 的分化表型,并强调了细胞周期调节激酶在探针分子中观察到的影响中的作用。我们随后发现这些化合物可抑制 Aurora A 和 GSK3α 激酶,表明它们有潜力成为 AML 分化治疗的治疗靶点。我们的工作支持了正确验证无活性工具化合物及其识别新靶点的潜力的重要性。
口腔癌负责世界各地的许多死亡,因为它导致了由于治疗失败而导致的复发和转移。常规处理破坏了分化的肿瘤细胞,但肿瘤干细胞种群具有抗性并重新填充肿瘤。Wnt/β-catenin信号传导参与肿瘤干细胞的维持,生存,自我更新和分化及其信号传导,可以通过表观遗传修饰来调节。该项目的目的是确定控制Wnt/β-catenin信号通路及其靶标涉及的表观遗传变化,并研究道路参与肿瘤干细胞积累和口服癌细胞系的化学性。研究了三种野生口服癌菌株(Cal27 wt; SCC9 WT; SCC25 wt)和顺铂耐药性(Cal27 CISR; SCC9 CISR; SCC25 CISR)及其肿瘤干细胞群(CTT+)和非肿瘤干(CTT-temor(CTTT-))。QPCR分析,以评估基因表达和蛋白质印迹以进行蛋白质水平评估。通过细胞可行性测试确定IC50剂量的抑制剂。球体流量和鉴定的CTT+的形成细胞术。染色质免疫沉淀以识别道路的表观遗传调节。Xenoenxe检验用于研究Wnt/β-catenin途径作为治疗靶标的潜力。我们观察到表观遗传机调节基因的表达增加,例如BRD7,EZH2,KDM4C和MLL1和CTNNB1基因,该基因在抗顺铂菌株中编码β-catenin的ctNNB1基因。Wnt/β-catenin途径基因(如APC和GSK3β)在3种化学主义菌株中减少,下游FGF18和MMP7基因增加。CTT+的种群表现出参与组蛋白甲基化的基因的更大表达。β-catenin和甲基化的H3K27ME3和H3K9ME2组蛋白在顺铂抗性菌株和CTT+中也增加了。EZH2(UNC1999)和β-catenin抑制剂(ICG-001和FH535)的抑制剂降低了CTT+的群体,并降低了化学谱系中CTT+的群体,并降低了β-catenin和Ezh2蛋白。H3K27ME3用抑制剂处理后也降低了它。UNC1999治疗增加了上游APC和GSK3β基因的表达,并且对ICG-001,FH535和UNC1999的处理可有效降低CTT+中下游MMP7基因。FH535显示出降低CTT+种群的有效性,尤其是与顺铂和UNC1999结合使用时。β-catenin抑制剂单一疗法或与顺铂和UNC1999结合降低了CTT+躯干表型。在肿瘤组织中施用FH535,FH535+顺铂和UNC1999+FH535之后,肿瘤生长降低,肿瘤β-catenin,Ezh2,H3K27Me3和肿瘤干细胞标记肿瘤降低。通过化学谱系和CTT+CTT+种群中的染色质免疫沉淀,我们确定EZH2与该地区
结直肠癌(CRC)是最常见的消化道癌。化学疗法药物(如奥沙利铂)经常被诊断为诊断患有晚期或转移性疾病的CRC患者。对CRC肿瘤发生的基础分子机制的深入了解和估计化学疗法敏感性的最佳生物标志物的鉴定对于治疗CRC至关重要。癌症家族的许多成员在癌症中失调,导致肿瘤发生,转移和耐药性。kif11是双极纺锤体的关键组成部分,在几种癌症类型中高度表达。我们通过Western印迹和QRT-PCR分析了KIF11在临床样品中的表达,并通过检测激酶的磷酸化特征和功能良好的功能分析,探索了其在CRC生长中的作用和机制。我们发现KIF11在CRC组织中被上调,并与晚期临床阶段和血管侵袭有关,并且KIF11的敲低导致肿瘤生长停滞,并通过增强的DNA损伤和细胞凋亡增强对Oxaliptin的敏感性。机械上,异常激活的p53信号传导或可能停用的GSK3β信号传导负责CRC细胞中的KIF11敲低介导的效应。因此,我们的数据牢固地证明了KIF11可以作为评估CRC中阿沙利铂敏感性的潜在癌基因和适当的生物标志物。
免疫。Science 337 :816-821, 2012 7) Ohmura S, Mizuno S, Oishi H 等:谱系相关转录因子结合 Gata3 Tce1 增强子介导谱系特异性程序。J Clin Invest 126 :865- 878, 2016 8) Mizuno S, Dinh TT, Kato K 等:通过CRISPR/Cas9系统简单生成酪氨酸酶基因 G291T 突变的白化 C57BL/6J 小鼠。Mamm Genome 25 :327-334, 2014 9) Sato Y, Tsukaguchi H, Morita H 等:转录因子MAFB 突变导致局灶性节段性肾小球硬化症和 Duane 回缩综合征。 Kidney Int 94 :396-407, 2018 10) Jamieson RV, Perveen R, Kerr B 等:bZIP 转录因子 MAF 的结构域破坏和突变与白内障、眼前节发育不全和眼缺损有关。Hum Mol Genet 11 :33-42, 2002 11) Niceta M, Stellacci E, Gripp KW 等:GSK3 介导的 MAF 磷酸化的突变导致白内障、耳聋、智力障碍、癫痫和唐氏综合症样面容。Am J Hum Genet 96 :816-825, 2015
缩写:AD,阿尔茨海默氏病; ALS,肌萎缩性侧索硬化症;应用,淀粉样前体蛋白; β,淀粉样β; BACE1,β位点淀粉样蛋白前体蛋白裂解酶1; BBB,血脑屏障; BCRP,乳腺癌抗性蛋白; BPS,双酚; BPA,双酚A; BPAF,双酚AF; BPB,Bisphenol B; BPF,双酚F; BPS,双足醇S; Ca 2 +,钙;猫,过氧化氢酶;中枢神经系统,中枢神经系统;中枢神经系统,皮质神经元; DA,多巴胺; DAT,多巴胺转运蛋白; PYSL2,二氢吡啶酶相关蛋白2; ECHA,欧洲化学局; EDC,内分泌破坏化学物质; ER,雌激素受体; GSK3β,糖原合酶激酶3β; HT-22,海马细胞系; IR,胰岛素受体; IRS,胰岛素受体底物; MAP2,微管相关蛋白2; MDA,疟原虫dehyde; MS,多发性硬化症; NFT,神经纤维纠缠; NOS,一氧化氮合酶; PD,帕金森氏病; PDI,蛋白二硫异构酶; RNase,还原核糖核酸酶; ROS,活性氧; SN,黑底尼格拉; SNC,黑质Nigra pars commacta;草皮,超氧化物歧化酶; SPS,老年斑块; SVHC,非常关注的实质; Th,酪氨酸羟化酶; TK,酪氨酸激酶; α -syn,α-苏核蛋白。*通讯作者。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。
摘要:随着人群的衰老,糖尿病和阿尔茨海默氏病的全球流行率令人震惊。许多流行病学数据表明,2型糖尿病与痴呆症风险增加之间存在很强的关联。这些疾病既是退化性的,又是进步性的,并且具有共同的风险因素。淀粉样蛋白级联反应在阿尔茨海默氏病的病理生理学中起关键作用。淀粉样β肽的积累逐渐导致tau蛋白的热磷酸化,然后形成神经纤维缠结,从而导致神经变性和脑萎缩。在阿尔茨海默氏病中,除了这些过程之外,大脑中葡萄糖代谢和胰岛素信号传导的改变似乎会诱导早期神经元丧失和突触可塑性的损害,在疾病的临床表现前几年。阿尔茨海默氏病期间大脑中存在胰岛素抵抗的大量证据已将这种疾病描述为“ 3型糖尿病”。可用的动物模型在理解2型糖尿病与阿尔茨海默氏病之间的关系方面非常有价值,但是迄今为止,机械性联系知之甚少。在这项非详尽的综述中,我们描述了可能将这两种疾病联系起来的主要分子机制,重点是胰岛素受损和IGF-1信号传导。我们还专注于GSK3β和DYRK1A,这是阿尔茨海默氏病的标志物,它们也与胰腺β-细胞功能障碍和2型糖尿病密切相关,因此可能代表两种疾病的常见治疗靶标。
a 2AP: Anti-Plasmine A 2 ACE2: Angiotensin converting enzyme 2 ADEV: extracellular vesicle derived from AGCC astrocytes: Gras with short chain Ampk: Kinase amp protein dependent Ana: anti-nuclear antibody APL: anti-phospholipid antibodies Apol1: Apolipoprotein L1 AP2: 2型AVC肺泡细胞:BHE脑部卒中:Hémato-脑脑屏障CCL:带半胱氨酸膜性cDC的趋化因子配体:常规树突状细胞:复杂呼吸链CIIII-10的子单位6 6 of Histocompatibility CMV: cytomegalovirus covars: monitoring and anticipation committee of health risks CSH: Hematopoietic stem cell Cyp: Cytochrome DDC: Dopa-Decarboxylase DFG: GLUSEURUL DDP4 GLUSEURAL FILTRATION: DIPEPTIDYL PEPTIDASE-4 E: Protein SARS-COV-2 EBNA:EPSTEIN-BARR核EBV:Epstein Barr病毒EM / SFC:肌电脑脊髓炎 / ERGIC慢性慢性疲劳综合征:内质网隔室的中间室内室内室内室内室内室内室内室,可质性网状 - 高尔基氏菌Et-1:endophinin-1 fsh:endophelin-1 fsh:follolicular刺激刺激性刺激激素刺激激素刺激激素1:1:1:fsh:FSH:FSH:fshelin-1:fsh:1:1:1:fsh:FSH: :垂体性促性腺激素GSK3β的释放激素:糖原合酶激酶3βH2 S:硫化氢具有:HCOV HCOV的高度权威:人冠状病毒IFN:Interferon
1, SFEBq = serum-free floating culture of em- bryoid body-like aggregates with quick aggrega- tion, CGE = Caudal Ganglionic Eminence, SS = Subpallium Spheroids, SAG = Smoothened Agonist, CXCR4 = Chemokine Receptor type 4, CO = Cortical Organoids, ALI-Cos = Air-Liquid Interface culture to Cerebral Organoids, MPCs = Mesoderm Progenitor Cells, IBA1 = Ionized calcium-Binding Adapter molecule 1, WDR62 = WD Repeat domain 62, KIF2A = Kinesin Fam- ily Member 2A, CEP170 = Centrosomal Protein 170, NARS1 = asparaginyl-tRNA synthetase 1, RGC = Radial Glial Cells, CNV = Copy Num- ber Variation, PTEN = Phosphatase and Tensin homolog, ODC1 = Ornithine Decarboxylase 1, PKB = Protein Kinase B, ASDs = Autism Spec- trum Disorders, FOXG1 = Forkhead Box G1, CHD8 = Chromodomain Helicase DNA-bind- ing protein 8, DEGs = Differentially Expressed Genes, DISC1= Disrupted-in-Schizophrenia 1, GSK3 = Glycogen Synthase Kinase 3, RTT = Rett Syndrome, MeCP2 = Methyl-CpG-binding protein 2, ERK = Extracellular signal-Regulated Kinase, MAPK = Mitogen-Activated Protein Ki- nase, MDS = Miller-Dieker Syndrome, AD = Alzheimer's Disease, APP = Amyloid Precursor Protein, PSEN = Presenilin, APOE = Apoli- poprotein E, NFT = NeuroFibrillary Tangles, MMP = Metalloproteinase, PD = Parkinson's Disease , SNCA = Synuclein Alpha, LRRK2 = Leucine Rich Repeat Kinase 2, HD = Huntigton's Disease, GSCs = Cancer Stem Cells, GBOs = Glioblastoma Organoids, TBI = Traumatic Brain Injury, CCI = Controlled Cortical撞击,NSE =神经元特异性烯醇酶。
b“总结大脑的纯粹复杂性使我们了解其在健康和疾病中功能的细胞和分子机制的能力。全基因组关联研究发现了与特定神经系统型和疾病相关的遗传变异。此外,单细胞转录组学提供了特定脑细胞类型及其在疾病期间发生的变化的分子描述。尽管这些方法为理解遗传变异如何导致大脑的功能变化提供了巨大的飞跃,但它们没有建立分子机制。为了满足这种需求,我们开发了一个3D共培养系统,称为IASEMBLOI(诱导的多线组件),该系统能够快速生成同质的神经元-GLIA球体。我们用免疫组织化学和单细胞转录组学表征了这些Iassembloid,并将它们与大规模CRISPRI的筛选结合在一起。在我们的第一个应用中,我们询问神经胶质细胞和神经元细胞如何相互作用以控制神经元死亡和生存。我们的基于CRISPRI的筛选确定GSK3 \ XCE \ XB2在存在高神经元活性引起的活性氧的存在下抑制了保护性NRF2介导的氧化应激反应,这先前在2D单一神经元筛选中没有发现。我们还应用平台来研究ApoE-4的作用,APOE-4是阿尔茨海默氏病的风险变体,对神经元生存的影响。与APOE-3-表达星形胶质细胞相比,表达APOE-4表达星形胶质细胞可能会促进更多的神经元活性。该平台扩展了工具箱,以无偏鉴定大脑健康和疾病中细胞 - 细胞相互作用的机制。 “
抽象单核细胞衍生的巨噬细胞在炎症性疾病中起关键的致病作用。在类风湿关节炎(RA)的情况下,存在特定的滑膜组织浸润巨噬细胞亚群与活性疾病或炎症分辨率有关。JAK抑制剂(JAKI)是第一个靶向合成疾病改良的抗疾病药物(TSDMARD),批准用于治疗与生物制剂具有可比疗效的RA。然而,目前尚不清楚jaki对巨噬细胞规范和分化的影响。我们已经分析了Jaki对RA患者的人外周血单核细胞亚群的转录和功能效应,以及通过粒细胞衍生的巨噬细胞的分化,由粒细胞 - 巨噬细胞刺激性刺激因子(GM-CSF)促进,这是一种促进RA的发育和发育生产的因素。我们现在报告说,jaki upadacitib恢复了RA患者外周血单核细胞亚群的平衡,并以剂量依赖性的方式恢复了巨噬细胞的偏向巨噬细胞。upadacitib处理的巨噬细胞显示出定义与体内平衡/炎症分辨率相关的滑膜巨噬细胞的基因的阳性富集。具体而言,upadacitinib治疗的巨噬细胞表现出明显升高的MAFB和MAFB调节基因的表达,GSK3β的抑制性磷酸化升高,并且在通过致病性刺激激活后显示出抗炎性细胞因子。这些结果也通过暴露于其他Jaki(Bariticinib,Tofacitinib)的巨噬细胞共享,但在TYK2抑制剂Deucravacitinib的存在下也没有。从整体上讲,我们的结果表明,Jaki促进了巨噬细胞的重新编程,以获取更具反炎/促分辨率的特征,这种效果与Jaki增强MAFB表达的能力相关。
