glikosfingolipids(GSL)是细胞膜的关键组成部分,需要维持膜的功能和流动性,并且还参与了许多重要的细胞过程,包括凋亡和耐药性。癌症的进展通常与GSL表达的变化有关,但是关于大多数GSL物种的分子机制的详细研究仍然有限。早期的研究表明,半乳糖酰二酰胺(Galcer)及其合成酶,陶瓷半乳糖替代酶(UGT8)在乳腺癌(BC)和耐药性(Sheepdog等人 dival。 div al。 div al。2013)。ugt8是肿瘤侵袭性的关键指标,也是预测乳腺癌肺转移酶的潜在标志物(Dziegiel等人。2010)。Galcer充当抗遗传分子,增加了化学疗法诱导的乳腺癌细胞对凋亡的抗性。然而,从galcer到凋亡调节的确切信号通路尚不清楚。先前发现,Galcer的积累与促凋亡蛋白的表达降低相关,而mRNA TNFR1B/CD120B和TNFR9/CD137以及抗凋亡mRNA和BCL2蛋白的表达增加。为了进一步研究Galcer和这些凋亡基因之间的调节轨迹,使用了两个细胞模型:一种过表达模型,其中MCF.7细胞被UGT8和Galerce隔离了,以及使用三重阴性细胞系MDA-MB-231的功能丧失模型,其中UGT8和Galcer与CRIRPR/Cerpr/cers9沉默了。我们的结果表明,在两个细胞模型中,TNFRSF1B和TNFRSF9的mRNA水平的变化是Galcer变化这些基因启动子活性变化的结果。在过表达模型中,增加的Bcl2 mRNA是启动子活性增加的结果,而在模型损失模型中,Bcl2水平的降低与mRNA稳定性降低有关。这些转录变化与关键转录因子和凋亡调节剂的变化有关,p53。在负细胞系中,观察到p53水平升高,p53的生长有助于凋亡的严重程度,通过治疗阿霉素的治疗证实,在总p53水平及其磷酸化时观察到变化。通过使用siRNA抑制mRNA p53表达并测试这些基因的启动子和mRNA水平的活性,还通过抑制mRNA p53表达来调节BCl2,TNFRSF1B和TNFRSF9基因的直接参与。p53表达调控是通过MDM2蛋白发生的,MDM2蛋白在阳性细胞系中相对于Galcer过度氧化。反过来,MDM2受该法案的调节,该行为在含有galcer的细胞系中激活。最终发现,通过与表皮生长因子(EGFR)受体的直接或间接相互作用,Galcer以独立于配体的方式激活该受体。这种激活导致了文件跟踪的激活,这导致对阳性细胞系中的凋亡和药物相对于galcer的抗性。
模块化设计使最终客户具有16%的平行连接的单个最大模块(16.38kWh)的容量选择功率。
RE:最终规则,E?ective日期的延迟:能源保护计划:通用服务灯的测试程序亲爱的Wilkerson博士,国家电气制造商协会(NEMA)代表300多个电气设备和医疗成像制造商,这些设备和医疗成像制造商可提供安全,可靠,以及E高的产品和系统。一起,我们的成员贡献了美国GDP的1%,并直接提供了近460,000个美国工作岗位,为美国经济贡献了超过2500亿美元。了解更多信息,请访问www.nema.org。NEMA的照明系统部门由美国的成员制造商组成,他们为美国消费者和企业带来了熟悉的名称品牌照明产品。按照国会在2007年的《能源独立与安全法》(EISA)中的指示,并在能源部的全国实验室支持和财务支持下,照明制造商将其产品线转变为固态照明(SSL),即发射二极管或LED的光。自2006年以来,国会拨款以支持这一市场转型总计约5亿美元,而制造商已经投资了数十亿美元在SSL研发和制造工厂的重新配置。毫不犹豫地,NEMA成员支持最终规则,阐明了2025年1月16日在联邦公报上发布的一般服务灯的测试程序(90 FR 4589)。最终规则是由NEMA成员的广泛投入制定的。规则o o o o o o os of-ers of-ers of to LED灯的产品测试和认证要求,并为美国制造商提供了具有创新功能的新产品(例如连接性和色彩调整)的新产品的确定性 - 消费者热切地在他们的家中和企业中采用。
本报告概述了智能无人系统 (UMS) 的自主系统测试和评估方法以及自主水平的现状。它旨在广泛回顾过去和正在进行的所有定义自主性和为军事应用相关的无人系统设定自主水平的努力。其中介绍了自主系统的当前性能指标、自主系统采用的当前标准以及评估自主水平和自主任务性能的主要框架。目前,机器人社区尚未采用任何定义 UMS 自主水平的框架。本报告总结了该领域的当前研究,并就充分定义自主性和自主任务性能所需的步骤提出了建议。
AM2 机场垫系统被美国军方用于临时、快速建造的机场。由于连接系统的设计复杂,接头的疲劳行为也复杂,因此预测允许通过 AM2 设施的飞机数量具有挑战性。在此之前,用于预测 AM2 性能的主流方法是基于柔性路面的 CBR 设计程序,使用少量全尺寸测试部分,CBR 范围为 4% 到 10%,并模拟不再使用的飞机。本报告介绍了对安装在不稳定土壤和碎石路基上的 AM2 垫部分进行的九次全尺寸实验的结果,CBR 分别为 6%、10%、15%、25% 和 100%,并提供了改进的关系,用于预测 AM2 垫装置下方的路基变形以及在受到 F-15E 和 C-17 交通影响时相关的疲劳损坏。此外,还介绍了一种实验室装置和程序,用于评估 AM2 型接头的疲劳性能并将其性能与给定的现场条件联系起来,而无需进行全尺寸测试。这些关系适用于目前用于机场路面和垫层系统的设计和评估框架。
近年来,图神经网络(GNN)凭借其邻域聚合的特性,在许多领域得到了成功应用,并取得了最佳性能。虽然大多数GNN处理图数据,但原始图数据往往带有噪声或不完整,导致GNN性能不佳。为了解决这个问题,最近出现了一种图结构学习(GSL)方法,通过学习符合基本事实的图结构来提高图神经网络的性能。然而,目前的GSL策略是迭代优化最优图结构和单个GNN,这会在训练中遇到几个问题,即脆弱性和过度拟合。本文引入了一种称为进化图神经网络(EGNN)的新型GSL方法,以提高对对抗性攻击的防御能力并增强GNN性能。与现有的GSL方法通过交替训练方法来优化图结构并增强单个GNN模型的参数不同,本文首次将进化理论应用于图结构学习。具体来说,通过变异操作生成的不同图结构用于进化一组模型参数,以适应环境(即提高未标记节点的分类性能)。然后使用评估机制来衡量生成样本的质量,以便仅保留具有良好性能的模型参数(后代)。最后,保留适应环境的后代并用于进一步优化。通过这个过程,EGNN 克服了图结构学习的不稳定性,并且始终进化出最好的后代,为 GSL 的进步和发展提供了新的解决方案。在各种基准数据集上进行的大量实验证明了 EGNN 的有效性以及基于进化计算的图结构学习的好处。© 2023 由 Elsevier BV 出版
一个简单的空间电梯由一个绳索组成,该系绳延伸,远远超出了地球同步高度和有效载荷的装置,该设备抓住和爬上了系绳。是一种基于摩擦的对方登山者,最有可能用当今的技术来构建,看来该系绳材料的大规模生产也可以实现。登山车轮和系绳之间的界面处的物理条件首先确定攀登的所有可能性,然后确定系绳的设计参数。检查了升压扭矩,拉伸,压缩和剪切强度,摩擦,界面温度,导热率和辐射冷却的条件,并用于设定系绳材料的最低要求。石墨烯层状(GSL)由单晶石墨烯层组成,似乎是具有足够高的拉伸强度的出色系绳材料。增加了其层间交叉键合以及使用登山车轮材料的较大摩擦系数可以使其满足攀登条件。最终确定GSL的适用性需要测量许多材料属性的许多,但尚不清楚。提出了此类测量的清单,并提供了部分贸易研究的部分列表和系绳设计的迭代列表。
继 [1] 的工作之后,我们定义了一个边界区域 B 的广义协变最大纠缠楔,我们推测它是可从 B 重构的本体区域。类似地,我们定义了一个协变最小纠缠楔,我们推测它是可以影响 B 上的状态的本体区域。我们证明了最小和最大纠缠楔遵循此猜想所必需的各种属性,例如嵌套、包含因果楔以及在适当的特殊情况下简化为通常的量子极值表面处方。这些证明依赖于我们推测成立的(受限)量子聚焦猜想 (QFC) 的一次性版本。我们认为这些 QFC 意味着一次性广义第二定律 (GSL) 和量子布索界限。此外,在特定的半经典极限中,我们使用代数技术直接证明了这个一次性 GSL。最后,为了推导出我们的结果,我们将一次性量子香农理论和状态特定重建的框架扩展到有限维冯诺依曼代数,允许非平凡中心。
仅供研究使用。不可用于诊断程序。© 2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。Amersham 和 Typhoon 是 Cytiva 的商标。SnapGene 是 GSL Biotech LLC 的商标。Gibson Assembly 是 Telesis Bio, Inc. 的商标,经许可和授权使用。APN-9114086 1024
doi:https://doi.org/10.22271/j.ento.2023.v11.i6a.9261抽象的植物植物 - 寄生虫线虫是全球12.3%(1570亿美元)的收益率损失最高的原因,全球和21.3%(158亿美元)(158亿美元)。合成nematicides对环境和公共卫生的不利影响促使对管理线虫的非化学方法进行了重新评估。一种这样的方法是生物耗尽,其中,新鲜的植物生物量被掺入土壤中,并用聚乙烯覆盖了两到三周,以抑制土壤传播的害虫和病原体。生物植物的机制是由于葡萄糖酸盐水的水解释放,葡萄糖酸的水解释放,葡萄糖醇的水解属于铜绿,漫画科和卡帕拉辛的植物中。非包质植物的挥发性线虫拮抗化合物的产生扩大了生物量的范围。这些化合物抑制线虫运动,削弱宿主的发现能力,也可能引起卵巢效应。生物肿瘤可有效控制真菌病原体和杂草,改善土壤特性并增强有益的土壤微生物。然而,该方法有一些局限性,例如淡淡的植物生物量在干燥的土壤和较深层的土壤中不可用。在存在生物剂量的情况下,也可以减少有益的昆虫致病线虫。但是,该技术可以成本效率地包括在综合线虫管理中,以获得可接受的线虫管理水平。由于非特异性疾病症状,它们也被称为植物的“看不见的敌人”,并且经常被忽视。关键词:铜氨基科,植物 - 寄生虫线虫,异硫氰酸盐和葡萄糖素酸盐引入植物寄生虫或PPN,是小的显微镜round虫,主要形成与宿主的强制性寄生虫键。由于PPN更适合各种农业气候区域,因此它们在所有种植系统中都是高度多样化和无处不在的。每年,园艺作物的损失百分比约为21.3%,估计为102,0.3979亿卢比(15.8亿美元);估计有198万卢比的50,2224.98亿卢比,估计有198.98亿卢比的198万卢比,造成了十九种园艺作物(香蕉,柑橘,葡萄,瓜瓦,木瓜,木瓜,石榴,苦瓜,胡萝卜,辣椒,辣椒,辣椒,番茄,番茄,番茄,奶油,番茄和土豆)的损失。,如果是十种田间作物(玉米,大米,鹰嘴豆,蓖麻,小麦,黑克,绿色克,葵花籽,黄麻和花生),则为卢比。51,8181万(Kumar等,2020)[17]。 政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。 由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。 因此,有效管理对于确保作物生产和最大收益至关重要。 使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。 在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。 GSL和ITC是生物量度中的关键活性化合物。51,8181万(Kumar等,2020)[17]。政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。因此,有效管理对于确保作物生产和最大收益至关重要。使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。GSL和ITC是生物量度中的关键活性化合物。GSL和ITC是生物量度中的关键活性化合物。生物耗尽生物量的历史是将新鲜植物生物量纳入土壤的过程,该过程通过释放几种化学物质来破坏土壤传播的病原体和害虫(Kirkegaard等,1993)[15]。有机物生物降解期间释放的挥发性化合物的熏蒸作用抑制了植物病原体(Buena等,2007)[6]。