世界农业需要找到适当的平衡,以应对养活人口增长,减少其对生物多样性的影响和最小化温室气体(GHG)排放之间的三元素。在本文中,我们评估了各种场景,这些方案在农业,林业和其他土地使用(AFOLU)行业中实现了4.3 GTCO 2,EQ /年温室气体缓解。< /div>。场景包括三种温室气体缓解政策的各种混合:第二代生物燃料生产,饮食变化和牧场造林。我们发现,将缓解措施集中在单个政策上可以为粮食安全或生物多样性保护的单一指标带来积极的结果,但对他人产生了重大的负面影响。所有三种缓解政策的平衡投资组合虽然对任何单一标准都不是最佳的,但通过避免对粮食安全和生物多样性保护的严重负面影响来最大程度地减少权衡。在区域规模上,不同区域环境中的生物多样性和粮食安全之间在全球范围内看到的权衡是细微的。
抽象将全球变暖限制为2℃以下将需要严格的缓解措施,并且可能需要额外的二氧化碳去除(CDR)来补偿原本没有减弱的排放。由于其技术准备,相对较低的成本和潜在的共同利益,因此将生物炭应用于土壤可能是有效的CDR策略。我们使用全球变化分析模型(一种全球多环境模型)来分析在不同碳价格轨迹下生物量与CDR的能源系统使用的背景下的生物炭部署。我们发现,生物炭每年可以创建每年2.8 GTCO 2的水槽,从而在给定的碳价格路径的情况下,整个情况下,全球平均温度在2100中降低了0.5%–1.8%。在我们的情况下,生物炭的部署取决于潜在的农作物收益率的收益和应用率,以及与其他CDR措施的资源竞争。我们发现,生物炭可以作为竞争性的CDR策略,尤其是在碳价格较低的情况下,当具有碳捕获和存储的生物能源尚不经济时。
C Degrees Celsius AEO Annual Energy Outlook ANL Argonne National Laboratory AR6 Sixth Assessment Report ATB Annual Technology Baseline Bcf, BCF Billion cubic feet Bcf/d Billion cubic feet per day BECCS Bioenergy with carbon capture and storage BIL Bipartisan Infrastructure Law Btu British thermal unit CCS Carbon capture and storage CDR Carbon dioxide removal CH 4 Methane CO 2 Carbon dioxide CO 2 e Carbon dioxide equivalent DAC Direct air capture DOE Department of Energy EIA Energy Information Administration EMF Energy Modeling Forum EPA Environmental Protection Agency EJ Exajoule (10 18 joules) FECM Office of Fossil Energy and Carbon Management FID Final investment decisions FTA Free trade agreement GCAM Global Change Analysis Model GDP Gross domestic product GHG Greenhouse gas Gt Gigaton GtCO 2 Gigatons二氧化碳
未来几十年的净排放目标要求开发新的温室气体(GHGR)技术,并扩展到最高10 GTCO 2 E/YR。到2050年。由于GHGR技术的跨学科性和新颖性,GHGR研究面临着将技术学科调整到新领域的挑战,并通过确定和解决关键问题所需的知识来广泛地增强研究人员的能力。这种观点讨论了生物技术可以在多种GHGR技术以及限制进步的常见研究,社区和知识差距中扮演的重要但持续不断的角色。焦点的GHGR技术是(1)酶碳酸酐酶在直接空气捕获中催化CO 2交换的潜力; (2)微生物对加速土壤或基于反应堆的增强岩石风化的潜在效用; (3)通过增强的甲烷营养或生物反应器来氧化甲烷以氧化甲烷,从而氧化甲烷,以使甲烷氧化以氧化。对这些GHGR方法的研究进度受到缺乏跨学科研究社区发展以及知识差距的强烈限制。有必要清楚且可访问的可行问题,理想情况下,将其与容忍度的资金机会配对,作为招募和赋予相关研究人员的工具,以使这些不足的技术领域为这些领域。
1 净预算包括清除量以及国际航空和海上运输。我们根据 IPCC 估计的从 2020 年初开始全球剩余碳预算 500 GtCO 2 来计算欧盟的温室气体预算,以 50% 的可能性将全球变暖限制在 1.5°C(IPCC 报告,表 SPM.2,第 29 页)。然后,我们假设世界人口的人均温室气体预算相等,从而得出欧盟约 5 亿居民的国内温室气体预算为 27.5GtCO 2 e。这种人均方法当然不能反映欧盟作为过去 200 年主要排放国的历史责任,也不能反映达到 1.5°C 温度限制的更高可能性(67% 或 83%)。为了充分体现欧盟的全球责任,考虑到历史责任和行动能力,需要以更全面的公平原则和实现 1.5°C 目标的更高可能性为基础,辅以更严格的预算。雄心勃勃的欧盟国内温室气体预算与完全符合公平原则的公平欧盟温室气体预算之间的剩余差距需要通过额外的国际气候融资和减缓支持措施来解决。
AEO年度能量前景AR6第六次评估报告ATB年度技术基线BCF,BCF十亿立方英尺BCF/D十亿立方英尺每天coccs与碳捕获和储存的生物能源相比,碳捕获和储存BIL双党双方双方基础设施基础设施法律 Environmental Protection Agency EJ Exajoule (10 18 joules) EU European Union FECM Office of Fossil Energy and Carbon Management FID Final investment decisions FTA Free trade agreement GCAM Global Change Analysis Model GDP Gross domestic product GHG Greenhouse gas Gt Gigaton GtCO 2 Gigatons of carbon dioxide HAPs Hazardous air pollutants HEIDM Household Energy Impact Distribution Model IPCC Intergovernmental Panel on Climate Change IRA LCA生命周期评估LNG液化天然气MAM MAM宏观经济活动模块MWAT MEGAWATT-HOUR MJ MEGAJOULE MMBTU MMBTU MMBTU MMT THORMAL单位MMT MMT MIM MTCO MTCO 200万吨二氧化物二氧化碳
AEO年度能量前景AR6第六次评估报告ATB年度技术基线BCF,BCF十亿立方英尺BCF/D十亿立方英尺每天coccs与碳捕获和储存的生物能源相比,碳捕获和储存BIL双党双方双方基础设施基础设施法律 Environmental Protection Agency EJ Exajoule (10 18 joules) EU European Union FECM Office of Fossil Energy and Carbon Management FID Final investment decisions FTA Free trade agreement GCAM Global Change Analysis Model GDP Gross domestic product GHG Greenhouse gas Gt Gigaton GtCO 2 Gigatons of carbon dioxide HAPs Hazardous air pollutants HEIDM Household Energy Impact Distribution Model IPCC Intergovernmental Panel on Climate Change IRA LCA生命周期评估LNG液化天然气MAM MAM宏观经济活动模块MWAT MEGAWATT-HOUR MJ MEGAJOULE MMBTU MMBTU MMBTU MMT THORMAL单位MMT MMT MIM MTCO MTCO 200万吨二氧化物二氧化碳
1。引言农业食品,酒店和旅游业由于贸易紧张局势,天气风险增加和高生产成本而受到压力(Amicarelli等人,2023年)。在生产方面,应该指出的是,RA人口增长迫使食品行业以高速度生产食品(Fr Ona等,2019)和食品服务以分配大量食物以满足人类需求,也不健康的食物(Lindgren等人,Lindgren等人,2018年,2018年; Fiore等,2021年; 2021年)。在消费方面,消费者并不意识到饮食的不可持续性,旅游业被迫适应全球旅行者的全球化食品和饮食趋势(Scott,2021; Pau Zuolien _ E等,2022),在环境观点下具有重要影响。导致人类消费的农作物产生约21%的整个温室气体(GHG)排放,估计为2.8 GTCO 2 EQ(Poore and Nemecek,2018年)。在食物浪费方面,这会导致大约931吨的食物从农业生产到消费,包括工业转型和分配(Fiore等,2017; FAO,2023)。近似碳足迹的估计为3.3 GTCO 2 EQ,家庭和食品服务造成了大约50%的此类数量(McCarthy等,2018)。考虑到旅游业,据估计,酒店客人每天产生超过1千克的固体废物,在结帐日增加了一倍(Abdulredha等人,2018; Amicarelli等,2021),三分之一以上的食物代表了仍然可食用的食物。“气候行动”),当地现实(例如在2015年,联合国引入了可持续发展目标(SDG),以维护和保护环境(例如“行业,创新和基础设施”)或社会社区(例如“可持续城市和社区”),仍然保证工业发展和经济增长。可持续发展目标旨在结束饥饿,实现粮食安全,改善营养和促进可持续农业(目标2),并确保可持续的消费和生产模式(目标12)(联合国,2023年)。此外,考虑到粮食生产和消费对环境的高影响,SGD要求采取紧急行动来打击气候变化及其影响(目标13)。在这种程度上,国家和国际现实已经实施了计划和战略来应对全球变暖并追求可持续发展。除其他外,欧洲绿色交易和叉式战略(欧洲委员会,2019年),旨在使食品系统公平,健康和环保,但同时也是新的循环经济行动计划(欧洲委员会,2020年),该计划促进循环经济流程,促进可持续的消费,并鼓励可持续的消费,并旨在防止浪费,并保持浪费,并保持经济的范围,以使经济保持不变。在COVID-19-19大流行后不久,它在食品制造,储存和分销方面对农业食品行业实现了几种变化,同时在食品获取,食物消费和食物浪费行为(Alabi and Ngwenyama,2023年,2023年; G€Uney and Eye和Sang Un,2021年),2021年,E。G.生态设计,扩展生产者的责任,消费者教育,可再生能源),以减少资源消耗和浪费
FAO途径报告中的显着方法论错误包括将肉排放到2050年,在分析中混合了不同的基线年,包括植物,水果和坚果消耗量增加的排放,这与饮食中替代肉类和牛奶无关的植物,水果和坚果消耗量[5]。此外,粮农组织做出了几种不适当的建模选择,例如忽略了饮食变化所避免的土地的潜在碳固执,而忽略了使用全国推荐的饮食(NRDS)冲突可持续健康的饮食,其中大多数并没有将可持续性置于他们的设计中,而不是使用诸如饮食饮食之类的型号。它还使用了自那以后已经过时的NRD,此后许多国家都更新了他们的肉类消费量[6]。例如,2022年的西班牙指南现在建议/周/周的肉类份量为0-3 [7]和2024年的德国指南,现在建议每周不超过300克肉[8]。组织呼吁粮农组织将其研究与其他经过同行评审的科学保持一致,例如EAT-Lancet和IPCC关于气候变化和土地的特别报告,这些报告估计节省了更高的排放。例如,IPCC引用了一项研究,该研究估计持续饮食(75%的肉和乳制品被谷物和豆类取代,每周只有一部分红肉)将全球排放量减少约5 GTCO 2 -eq每年[9] - 比FAO的估计高9倍。
行星的温度取决于阳光的吸收与热量损失到空间之间的能量平衡。在地球上,有一个相对平衡的能量平衡,使行星可居住数十亿年。当阳光到达地球的表面时,它可以反射回太空而不温暖地球,也可以吸收并温暖地球(当行星吸收能量时,其中一些能量被释放到大气中作为热量)[1]。大气中的一些气体吸收能量并延迟或防止热量释放到太空。这些气体被称为温室气体(GHG),其作用像毯子,使地球比以前更温暖。这个被称为温室效应的过程是自然而自然而必要的,可以维持地球上的生命。然而,由于人类活动而导致的这些气体释放的无限增加正在导致这些气体在大气中的积累,并且正在改变地球的气候(全球变暖),对人类的健康和福祉造成了危险的后果,甚至对生态系统的健康和福祉造成了危险的后果[2]。最重要的温室气体是二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)。然而,人类使用化石燃料还会产生其他环境有害的气体,例如一氧化碳(CO),氮氧化物(NOX),二氧化硫(SO 2),非甲烷挥发性有机化合物(NMVOC)和颗粒物,有助于气候变化[3]。氟化的气体(F-Gasses)没有明显的天然来源,即它们起源于人造活动。如图1所示,温室气体的排放随着人类的发展和增长而增加,这表明了1990 - 2019年GTCO 2 -eq [4]中某些气体的排放。这些气体有四个主要类别,这些类别分为氢氟化合物(HFC),全氟甲虫(PFCS),硫六氟乙烯(SF 6)和氮三氟化物(NF 3)(NF 3),而HFC则是最重要的。这些气体在大气中可以长寿,