对传统的aatgut抗议!在欧洲,禁止植物品种和动物品种的专利以及常规育种的过程。仅在遗传工程直接更改遗传物质时才能授予专利。,但根据行业的意愿,即使它们不是来自基因工程方法,也应授予动植物的专利。如果植物具有随机原理出现的遗传变化(突变),则也应授予专利。传统育种也受这些专利的影响。欧盟必须停止这种发展。将来还必须用于常规育种的整个生物多样性范围。只要不完全禁止在动植物上的专利,该专利必须严格限于基因工程过程。欧盟必须确保对欧洲专利法的正确解释!必须澄清一下:如果它们的性质基于交叉点,选择,随机变形或自然发生的自发基因变化,则不允许使用动植物的专利。在1998年,在欧洲允许基因工程工厂的专利,已经授予了成千上万的专利,已获得基因改良的动植物。这些专利在1998年允许使用98/44/EC指令,其中专利性仅限于转基因的动植物。Corteva等伟大的国际公司(以前基于随机突变的程序不得获得专利。欧洲专利局已接管了欧盟的39个缔约国。crispr专利将专利提供给拜耳和孟山都等最初引入的公司,以使其转基因种子成为有利可图的商业模式。新基因工程(NGT)的植物经常注册以获得专利。dowdupont)和拜耳在这里领导。中型欧洲种植者想要与新的基因工程合作,通常必须与大型公司签订合同,从而成为新的依赖。CRISPR专利在许多情况下威胁着常规育种,这些专利的范围绝不限于基因工程植物。技巧:当随机突变引起时,各自的基因变化也会被要求。对于Saatzucht(KWS)Kleinwanzleben来说,专利是从传统繁殖的玉米上授予的,但可以用基因剪刀“模仿”。The Offidious:KWS这样的公司也希望控制对生物多样性的访问,即使没有使用基因工程。
Abstract ____________________________________________________________________________________________________ Allulose and sugar alcohols, like erythritol and xylitol, are low-calorie sweeteners gaining attention for their potential to positively influence metabolic health.此简短评论探讨了这些甜味剂如何塑造肠道菌群。充当益生元,它们可以促进有益细菌的生长并刺激短链脂肪酸的产生。这些作用可能有助于提高胰岛素敏感性,炎症降低和更强的肠道屏障。但是,过量的糖酒摄入会导致消化不适。需要进一步的研究来评估这些甜味剂对肠道菌群和代谢健康的长期影响,以及它们与其他饮食因素的相互作用。通过了解这些甜味剂,肠道菌群和代谢健康之间的复杂关系,可以制定明智的饮食指南,以优化健康和福祉。关键字:词汇量,肠道微生物群,麦芽醇,益生元,山梨糖醇,木糖醇。
粪便菌群是胃肠道中发现的复杂而多样的细菌群落,对人类的幸福感至关重要。这种微生物包括真菌,细菌,病毒和古细菌,支持许多必不可少的功能,包括作为免疫系统调节,维生素合成和消化。粪便菌群与各种疾病有关,对于维持健康至关重要。生物信息学和测序技术的进步使其对其组成,多样性和功能有了更大的了解。fircITITES和杀菌剂构成了肠道菌群中的大部分细菌,其肌动杆菌,蛋白质细菌,verrucomicrobia和fusobacteria构成了丰度。这些细菌种群受年龄,饮食,遗传学,抗生素使用和环境的影响;较高的多样性通常与改善健康有关。短链脂肪酸(SCFA)是在乳脂杆和梭状芽胞杆菌,消化食品纤维等公司时产生的。SCFA对肠道健康至关重要。prevotella和其他细菌植物家族的成员对于复杂碳水化合物的分解至关重要。类似于双歧杆菌,肌动杆菌对肠道健康有益,尤其是在幼儿中。尽管它们不那么普遍,但蛋白质细菌包括沙门氏菌和大肠杆菌等危险物种,而verrucomicrobia(最值得注意的是,akkkermansia粘膜粘膜)可以维持健康的肠道衬里并具有抗炎质量。益生元和益生菌有能力通过重新建立微生物平衡来改善健康结果。肠道菌群是几种治疗干预措施的靶标,包括抗生素管理,粪便菌群移植(FMT),益生菌和益生元。肠道微生物群可以通过新颖的疗法(例如靶向微生物组的下一代益生菌,合成生物学和药物)来精确改变。肠道微生物脑链接,微生物组 - 脑轴以及微生物在癌症治疗中的作用将是未来研究的重点。针对微生物群的药物的有效性将通过考虑个体微生物模式的个性化药物方法来提高。关键字:粪便菌群,肠道菌群,微生物群 - 健康相互作用,短链脂肪酸(SCFA),粪便菌群移植(FMT),微生物群靶向的疗法。
通过使用AI分析语言数据,研究有关语言获取和学习外语的知识可以提供研究。Moritz Dittmeyer博士是哲学家和物理学家。他在歌德实验室语言中为歌德学院工作,并为学习语言开发AI应用程序。“我们去年开发了印加人。这是一位智能更正助手,他支持教师对生产写作任务的更正和评估。inka具有自己的集成语音模型。校正助手接受了各种机械和深度学习方法的培训。为此,我们使用了一百万个文本数据。收集到的培训评论和更正截然不同。您并不总是完全可用。通过新的培训数据,预测越来越好。 ”
尽管对于静态针孔摄像头情况(第一个列),两种分布的分布都是一致的,但与基于EWA的基于EWA的估计值相比,基于UT的速度更为准确,而对于静态拟合摄像机案例(第三列),则在较高的非网络性非线性的情况下,UT可以使UT产生更好的近似值。用于滚动式摄像头姿势(第二和第四列),基于RS的UT-预测仍然可以很好地估计RS感知的MC介绍。相比之下,RS-Unaware EWA线性化分解,无法近似此情况(直方图域被封顶为0。04用于更清晰的可视化,但是基于EWA的投影仍具有较大KL值的较长尾巴分布)。在基于EWA的RS渲染中观察到的撕裂伪影是由这些不准确的程序引起的,导致在体积渲染步骤中导致不正确的像素到高斯的关联。
Harlan及其对宾夕法尼亚州的愿景,尤其是为了纪念宾夕法尼亚州总统Emerita Amy Gutmann的领导和奉献精神,以命名建筑物。最终,在10月17日,宾夕法尼亚工程公司在佩里世界大厦(Perry World House)共同举办的活动中启动了最新的倡议,负责任的创新,并在宾夕法尼亚州华盛顿中心举行。与理查德·佩里(Richard Perry)教授兼佩里·霍洛维茨(Richard Perry World House)的主持人迈克尔·霍洛维茨(Michael Horowitz)以及宾夕法尼亚州受托人兼工程委员会成员泰德·施莱因(Ted Schlein)(C'86),这项活动的关键主题包括考虑技术创新的长期影响,将创新与调节与调节之间的平衡以及对Etheric和社会影响力的先进和机构教育的融合。通过我们的全球校友和朋友社区的奉献,这些进步都成为可能。对你们每个人,我都感谢您坚定不移的承诺和持续的支持,我特别期待我们共同的乐观感将给我们的学生,我们的社区和世界带来什么。
近 2500 年后,科学证实了这一事实。人体含有约 100 万亿个微生物(微生物群),数量远远超过人体细胞。微生物群的最大部分(约 80%)位于大肠中,直接影响消化系统、免疫系统、神经系统和内分泌系统的功能。健康的微生物群由多达 1000 种不同的有益细菌组成,有益细菌与有害细菌的比例分别约为 85% 和 15%。这种多样性和比例可能会因不良饮食、毒性和压力等现代生活方式的影响而发生巨大改变。
对马来西亚胃肠病学和肝病学学会年度科学会议的所有参与者非常热烈欢迎(MSGH)2024。祝贺2024年GUT的组织委员会成功组织了这一事件,这使参与者有机会鼓励多部门的讨论和胃肠病学领域的思想交流。这样的事件对于促进专业互动并确保胃肠病学界可以访问最新的医疗信息至关重要。这样的平台是将技术进步变为实用步骤的最佳方法之一,以提高胃肠病学领域的分娩水平。虽然卫生部致力于为国家的利益转变医疗保健,但如果我们孤立地工作,就无法实现这一目标。交换思想,知识共享和政策讨论的平台将使我们的医疗保健系统受益。