2014 年埃博拉病毒的爆发和最近新型冠状病毒疾病 2019 (COVID-19) 的传播重新引起了人们对用于消毒的杀菌紫外线 (GUV) 灯的兴趣。紫外线辐射能于 1877 年首次用于表面消毒,1,2 于 1910 年用于水消毒,3 于 1935 年用于空气消毒。4 近几十年来,GUV 在美国的使用主要限于水处理设施,隐藏(屏蔽)在供暖和空调管道中,或用于生物实验室。许多国家正在使用 GUV 来控制结核病 (TB) 的空气传播。此外,一些美国医疗机构现在正在使用自主移动设备(“机器人”)来增强病房的卫生,以减少医院内感染。更广泛地使用 GUV 通常会受到安全问题的限制,但与潜在的感染预防相比,这些问题是可控的,而且微不足道。大多数公众并不知道它在空气和受污染表面消毒方面的独特价值。本文档中解决的有关 GUV 的常见问题 (FAQ) 分为以下几类:
摘要:巨型单层囊泡(GUV)的产生在各种科学学科,尤其是在合成细胞的发展中起关键作用。尽管存在许多用于GUV准备的方法,但经过修改的连续液滴界面交叉封装(CDICE)方法提供了简单性和高封装效率的优势。但是,该技术的一个重要局限性是囊泡的产生,具有较大的尺寸分布,无法控制所需的尺寸范围。这提出了一个关键问题:是否可以优化修改的CDICE方法以生产具有控制尺寸分布的GUV?在这项研究中,我们检查了两个实验参数的效果:CDICE室的旋转时间(T腐)和角频率(ω)在GUV的尺寸分布中。我们的结果表明,减少角频率或旋转时间将尺寸分布转移到较大的囊泡,从而实现有效的尺寸选择。这些发现得到了物理模型的进一步支持,该模型提供了对尺寸选择基础机制的见解。这项工作表明,可以通过直接调整系统参数来控制对GUV尺寸分布的控制。微调囊泡尺寸的能力为研究人员提供了一种强大的工具,用于开发可定制的用于合成生物学和相关领域的实验系统。关键字:GUV,合成细胞,CDICE,大小选择
生态学从历史上受益于在社区内外生物多样性的统计模式的表征,这种方法称为宏观生态学。在微生物生态学中,宏观生态学方法确定了可以通过有效模型捕获的多样性和丰度的普遍模式。实验同时发挥了至关重要的作用,因为高复制社区时间序列的出现使研究人员能够调查潜在的生态力量。但是,在实验室中进行的实验与自然系统中记录的宏观生态模式之间存在差距,因为我们不知道这些模式是否可以在实验室中概括,以及实验性操纵是否会产生宏观生态影响。这项工作旨在弥合实验生态学和宏观生态学之间的差距。使用高复制时间序列,我们证明了尽管有控制的条件,但在实验室环境中仍存在于自然界中观察到的微生物宏观生产模式,并且可以在随机的逻辑模型(SLM)下统一。我们发现人口操纵(例如迁移)影响观察到的宏观生态模式。通过修改SLM将上述操作与实验细节(例如采样)一起,我们获得与宏观生态结果一致的预测。通过将高复制实验与生态模型相结合,可以将微生物宏观生态学视为一种预测性学科。通过将高复制实验与生态模型相结合,可以将微生物宏观生态学视为一种预测性学科。
和VQVG WKFV‡ewpšívkw3gwâstar‡vm ˆzwi guv‡whearn(神经可塑性)| andvqy –vbxqzvi db - wz这是相同的,vqvg g‡bv‡hv‡hv‡hv,wpšívkw3gesï§out§•
大自然是科学家取之不尽的灵感源泉。仿生方法的发展目标是重现生物体所表现出的特定特征,以实现目标功能。合成生物学从生物系统中汲取灵感,目的是重新设计它们,甚至构想出具有特定能力的新型人工生物系统。这种自下而上的方法导致了人工细胞和组织的制造 1-4 。这种方法不仅有利于开发有前景的生物医学或制药应用,而且对基础研究也很有价值。人工细胞的操作适用于研究细胞特性或细胞机制,由于其固有的复杂性或多因素性 5-7 ,使用活细胞来解决这些问题具有挑战性。在这种背景下,人们开发出了多种简化的仿生人工细胞,其复杂程度降低。虽然这些细胞模型在结构上可以多种多样(液滴、凝聚层、脂质体、聚合物囊泡 1,8 ),但巨型单层囊泡 (GUV) 是最相关的仿生原型之一 9 。GUV 由磷脂半透性双层构成。生化膜成分可以通过使用特定的脂质混合物和加入膜蛋白来随意丰富。然而,GUV 是还原论的细胞模型,因为它们是被动物体,不能主动移动、交换,也不能表现出机械转导机制、繁殖或死亡。囊泡是软物体,其膜弯曲模量约为
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年10月21日。 https://doi.org/10.1101/2024.01.18.576308 doi:Biorxiv Preprint