2 DataTeCnica LLC,华盛顿特区,美国20037年20037年3制药科学与药物基因组学,UCSF,UCSF,加利福尼亚州旧金山,美国,美国4记忆和老化中心,威尔神经科学系神经病学系美国医学博士贝塞斯达,美国20892 6综合神经基因组学部,神经遗传学实验室,国家老化研究所,国家卫生研究院,美国国家卫生研究院,贝塞斯达,马里兰州贝塞斯达,美国7号图书馆服务部,美国国家卫生研究院,美国贝塞斯达国家卫生研究院,贝塞斯达州贝塞斯达,玛丽·玛丽·克莱斯特式医学研究所。美国俄亥俄州克利夫兰。9加利福尼亚大学旧金山分校放射与生物医学成像系,美国加利福尼亚州旧金山。10德国神经退行性疾病中心(DZNE),德国Tübingen,应向Mike A. Nalls(nallsm@nih.gov)和Hampton L. Leonard(Hampton.leonard@nih.gov)发给阿尔茨海默群岛和相关dementias t44,bhips t44,NIH的Hampton L. Leonard(hampton.leonard@nih.gov) 20892。单词计数:3723确认
全基因组关联研究 (GWAS) 可以揭示重要的基因型-表型关联,但是,必须解决数据质量和可解释性问题。对于寻求根据现有证据确定目标优先次序的药物发现科学家来说,这些问题超出了单个研究的范围。在这里,我们描述了推断的基因-性状关联的合理排名、过滤和解释,以及通过利用现有的管理和协调工作跨研究的数据聚合。对每个基因-性状关联进行置信度评估,分数完全来自汇总统计数据,将蛋白质编码基因和表型联系起来。我们提出了一种从跨研究汇总证据评估基因-性状关联置信度的方法,包括基于 iCite 相对引用率和平均排名分数对科学共识进行文献计量评估,以汇总多元证据。该方法旨在用于药物靶点假设的生成、评分和排序,已作为分析流程实施,以开源形式提供,具有公共结果数据集和专为药物研发科学家使用而设计的 Web 应用程序,网址为 https://unmtid-shinyapps.net/tiga/。
基因组工具促进了繁殖计划中有效选择改进的遗传材料。在这里,我们专注于两个苹果水果质量特征:形状和大小。我们利用了从355种基因型的收获中收集的11种水果形态参数的数据,该基因型是Apple Refpop Collection的355个基因型,该基因型是欧洲培养苹果中存在的遗传变异性的代表性样本。然后使用FARMCPU和BLINK模型将数据用于全基因组关联研究(GWAS)。分析确定了59个与果实的大小和形状性状相关的SNP(35个带有farmcpu和45张眨眼),负责71 QTN。这些QTN分布在所有染色体上,除了染色体10和15。由27个SNP识别的三十四个QTN与大小特征相关,而37个由26个SNP识别的QTN与形状属性有关。含有最相关的SNP的单倍嵌段的定义,其中包括卵形家族蛋白MDOFP17和MDOFP4的基因,该基因在9.7kb的Haploblock上,在11.7kb的Haplobock中。RNA-seq数据显示,这些基因在长方形品种“ skovfoggoggoggoggoggoggoggoggoggoggoggoggoggoggoggoggog”中的表达低或无效,并且在平坦的“ Grand'mere”中表达更高的表达。基因本体富集分析支持OFP和激素在形状调节中的作用。总而言之,对Apple RefPop收藏的这种全面的GWA分析揭示了有希望的遗传标记和与苹果水果形状和大小属性相关的候选基因,从而提供了有价值的见解,从而可以提高未来繁殖计划的效率。
一项全基因组关联研究 (GWAS) 的荟萃分析确定了八个与心率变异性 (HRV) 相关的基因座,但这些基因座中的候选基因仍未得到表征。我们开发了基于图像和 CRISPR/Cas9 的流程,系统地表征活斑马鱼胚胎中 HRV 的候选基因。在转基因表达平滑肌细胞 GFP 的斑马鱼 (Tg[ acta2:GFP ]) 的卵子中同时靶向六个人类候选基因的九个斑马鱼直系同源物,以使跳动的心脏可视化。在受精后 2 天和 5 天,对 381 个活的完整斑马鱼胚胎中的心房跳动进行 30 秒重复记录的自动分析突出显示了影响 HRV 的基因( hcn4 和 si:dkey-65j6.2 [KIAA1755] );心率( rgs6 和 hcn4 );以及窦房停顿和骤停风险( hcn4 )。暴露于 10 或 25 µM 伊伐布雷定(HCN 的开放通道阻断剂)24 小时后,在受精后 5 天,剂量依赖性地导致 HRV 升高和心率降低。因此,我们的筛选证实了已确定的心率和节律基因(RGS6 和 HCN4)的作用;表明伊伐布雷定可以降低斑马鱼胚胎的心率并增加 HRV,就像在人类中一样;并突出了一个在 HRV 中发挥作用的新基因(KIAA1755)。
摘要解释非编码GWAS变体的功能意义仍然具有挑战性。虽然与细胞类型的特定顺式调节元件(CRE)共定位变体促进了我们的理解,但许多变体仍然无关。在这项研究中,我们提出了Gem-Finder(用于精细发现启动子链接变体的基因组元素映射),这是一个新型的分析框架,该框架整合了转录组,表观基因组(H3K27AC CHIP-SEQ)和染色质相互作用数据。Gem-Finder利用远程染色质相互作用来识别连接特定细胞类型的差异表达基因的CR。当我们将宝石 - 芬德用于内皮分化时,与主要针对细胞类型特异性CRE的常规方法不同,Gem-Finder识别出7.6倍的疾病/性状关联。具体而言,通过整合转录组,表观基因组(尤其是H3K27AC CHIP-SEQ)和内皮分化过程中的远程染色质相互作用,我们确定了与分化特异性基因相关的CRE。我们的丰富分析揭示了53种人类疾病/特征的共同和独特的关联。值得注意的是,其中大多数(68%)以特定于分化的方式表现出独特的关联。血液学特征和神经精神疾病主要与内皮分化的最后阶段有关,而几种复杂的疾病(例如结直肠癌(CRC))与后期意外相关。我们的发现强调了利用远程染色质相互作用以准确识别与疾病相关的CRE在非编码GWAS变体的功能表征中的重要性。
罕见的疾病由于其多种症状而经常出现微妙的症状以及其低患病率而引起了重大诊断挑战。基因组广泛的关联研究(GWAS)已经鉴定出遗传变异和疾病之间的关联,但是指出因果基因,特别是在单基因稀有疾病中,仍然很复杂。该项目利用大语言模型的力量来增强GWAS分析并改善罕见疾病的诊断。我们的方法探讨了两个关键目的:(1)给定一组通过GWAS鉴定的顶级病原基因候选者,预测与这些基因相关的可能条件,考虑它们的复杂相互作用和潜在的多源性效应,以及(2)开发LLM驱动的型框架,以使年龄较大的疾病,详细症状,临床诊断,临床诊断,临床上的疾病,概述了较高的诊断,以诊断为包括年龄的患者特征,并最大程度地诊断出临床,并诊断出临床,并诊断出临床,并诊断出临床,该临床的诊断。这种方法旨在提高诊断准确性,并减少罕见病患者诊断的时间。我们将使用已发表的稀有疾病案例研究来验证我们的模型,并将我们的性能与现有诊断方法进行比较。
作者:FR Francisco · 2021 · 被引用 21 次 — 巴西橡胶树 (Hevea brasiliensis) 是大戟科的一种大型树种,具有不可估量的经济价值。橡胶树育种计划...
gbA2抗糖基糖酶对降低糖脂脂的降低gbA3 a腹葡萄糖基酰胺酶,降低糖磷脂脂糖gpx1 ebselen谷胱甘肽过氧化物酶过氧化物酶诱导的氧化应激GPX2 EBSELENE粘液酶GPX2 EBSELENE氧化物GPX2 E氧气氧化剂GPX3 E氧化剂氧化剂氧化剂GPX3 induced oxidant stress GPX4 Ebselen Glutathione peroxidase induced oxidant stress GPX5 Ebselen Glutathione peroxidase induced oxidant stress GPX6 Ebselen Glutathione peroxidase induced oxidant stress GPX7 Ebselen Glutathione peroxidase induced oxidant stress HIF1A 2-deoxy-D-glucose glucose metabolism - hypoxia-inducible factor-1 𝛼 HRH2 Famotidine Histamine response in inflammation HTR1A Cyproheptadine Serotonin and histamine receptor binding HTR2A Cyproheptadine Serotonin and histamine receptor binding HTR3A Cyproheptadine Serotonin and histamine receptor binding HTR2C Cyproheptadine Serotonin and组胺受体结合
Max Lam 1,2,3,4,5 , Chia-Yen Chen 3,6,7 , Tian Ge 2,7 , Yan Xia 8,9 , David W. Hill 10,11 , Joey W. Trampush 12 , Jin Yu 1 , Emma Knowles 13,14,15 , Gail Davies , Eli Ah 11 , 16 , 16 . 8 , Laura Huckins 17,18 , David C. Liewald 11 , Srdjan Djurovic 19,20 , Ingrid Melle 21 , Andrea Christoforou 22,23 , Ivar Reinvang 24 , Pamela DeRosse 1,4,25 , Astrid J. Lunder , 23 , Espe M. seth 21,24 , Katri Räikkönen 27 , Elisabeth Widen 28 , Aarno Palotie 28,29,30 , Johan G. Eriksson 31,32,33 , Ina Giegling 34 , Bettina Konte 34 , Annette M. Hartmann 34 , Panos 15 , Stella Rousso , 18 and 36 , Katherine E. Burdick 17,35,37 , Antony Payton 38 , William Ollier 39,40 , Ornit Chiba-Falek 41 , Deborah C. Koltai 42 , Anna C. Need 43 , Elizabeth T. Cirulli 44 , Aristo N. Stetlesko 44 , C. Niskos 44 . ,48 , Dimitrios Avramopoulos 49,50 , Alex Hatzimanolis 46,47,48 , Nikolaos Smyrnis 46,47 , Robert M. Bilder 51 , Nelson B. Freimer 51 , Tyrone D. Cannon 52,53 , Edythe London 51 , Russell A. Fred 54 , W. liza Congdon 51 , Emily Drabant Conley 56 , Matthew A. Scult 57,58 , Dwight Dickinson 59 , Richard E. Straub 60 , Gary Donohoe 61 , Derek Morris 61 , Aiden Corvin 62 , Michael Gill 62 , Ahmad R. Pend 65 , Daniel R. Weber , Neil . leton 63 , Panos Bitsios 64 , Dan Rujescu 34 , Jari Lahti 27.65 , Stephanie Le Hellard 20.23 , Matthew C. Keller 66 , Ole A. Andreassen 21.67 , Ian J. Deary 10.11 , David C. Glahn 15 , 13 , Haili Huang , 13 nyu Liu 8,9 , Anil K. Malhotra 1,4,25 and Todd Lencz 1,4,25
是作者/资助者,已授予 medRxiv 永久展示预印本的许可。 (未经同行评审认证)预印本此版本的版权持有者于 2021 年 11 月 20 日发布。;https://doi.org/10.1101/2021.11.19.21265383 doi:medRxiv 预印本