除了减少与制冷剂相关的排放外,我们的目标是逐步淘汰GWP到2025年的GWP超过2,200的制冷剂,并最终改用仅使用天然制冷剂。到2022年,Aldi商店中使用的制冷剂中已经有93%的制冷剂具有少于2,200的全球变暖潜力(GWP)2。为了进一步减少制冷排放,所有Aldi South Group国家都计划从2024年开始,最高GWP为4。在需要特定制冷剂的RDC中的制冷系统可能需要例外。在这种情况下,我们将回收和再利用制冷剂。我们密切,不断地监视异常,分析符合立法要求并纳入最新技术的最终淘汰的可能性。为了减少与制冷设备相关的能源消耗和排放,我们将在2024年开始在全球所有商店中安装冷藏门。
图 1. 2021 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2021 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2021 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2021 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州的石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................28 图 12. 1990 年至 2021 年纽约州的 CH 4 总排放量(AR5 GWP 20)....................................................................................................................108 图 13. 1990 年至 2021 年纽约州的上游 CH 4 排放量(AR5 GWP 20)....................................................................................................108 图 14. 1990 年至 2021 年纽约州的中游 CH 4 排放量(AR5 GWP 20)....................................................................................................................109图 16. 2021 年下游、中游和上游 CH4 排放量占总排放量的百分比 ............................................................................................................. 111 图 17. 2021 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量(AR5 GWP 20) ............................................................................................. 112 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 113 图 19. 2021 年纽约州各县 CH4 排放量地图(AR5 GWP 20) ............................................................................................. 124 图 21. 帝国大厦发展公司确定的纽约州经济区域.... 131 图 22.2021 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20) ...... 132 图 23. 使用 AR5 GWP 20 CH 4 换算因子比较 1990 年和 2021 年纽约州源类别 CH 4 排放量 ................................................................................................................................ 134 图 24. 图 ES-11 的复制品(EPA 2023),显示能源和其他部门排放的时间序列趋势 ................................................................................................................................ 135 图 25. 包括最佳估计值和上下限的总排放量(AR5 GWP 20) ................................................................................................................................................ 141 图 26. 包括上限和下限的上游排放量(AR5 GWP 20) ............................................................................................................................................. 142 图 28. 包括上限和下限的下游排放(AR5 GWP 20)...................................................................................................... 142
纽约和新泽西州的港口管理局致力于开发低是具体的碳混凝土(LECC)系统。本报告总结了用于评估港口管理局当前实践中使用的混凝土混合物的碳足迹所进行的研究任务。生命周期评估(LCA),以量化混凝土原料的温室气体排放(GHG)或全球变暖潜力(GWP)。在LCA中考虑了上游温室气排放和行业副产品的经济分配方法。通过东部混凝土材料提供的环境产品声明(EPD)(EPD)(EPD)(EPD)(A1),LCA结果在材料阶段进行了验证。使用端口管理局提供的混凝土数据库用于编译数据集,以进行进一步的分析,其中包括混凝土混合物组件,抗压强度和氯离子渗透性。考虑到补充胶结材料(SCM)与粘合剂比,水与粘合剂比以及粘合剂的骨料比,分析了混合设计因子对混凝土GWP的影响。研究了混凝土GWP与抗压强度与氯离子通透性之间的关系。结果表明,使用SCM可以有效地减少混凝土GWP。与粉煤灰(FA)相比,砂油炉炉灶(GBFS)混合粘合剂会带来更多的好处,以减少混凝土GWP,同时达到类似的抗压强度和更好的耐用性。低碳混凝土含有FA和GBF的混合水泥,SCMS与粘合剂的比率更高。但是,可以在不增加混凝土GWP的情况下实现低氯离子渗透率。,具有更高抗压强度的混凝土混合物预计会导致GWP更高,尽管增加的趋势并不明显。最后,多年来,在1999 - 2021年之间,在港口权威使用的混合水泥(水泥与SCMS混合)的混凝土混合物多年来,人们普遍降低了混凝土GWP。
许多制冷剂具有较高的全球变暖潜能值 (GWP),因此及时修复设备泄漏并在维护和设备退役时收集制冷剂至关重要。氟化气体 (F-gas) 制冷剂占全球温室气体 (GHG) 总排放量的 2%。旧式制冷剂含有高臭氧消耗潜能值 (ODP) 和高全球变暖潜能值 (GWP) 成分。热泵中使用的现代制冷剂在 100 年内 GWP 是二氧化碳 (CO 2 ) 的 2,000 倍。制冷系统中使用的制冷剂的 GWP 几乎是 CO 2 的 4,000 倍。但并非所有制冷剂都相同。制冷剂和混合物有成千上万种,GWP 值从 0 到 12,500 不等。根据国际能源署的数据,到 2050 年,全球制冷剂需求预计将增长四倍,因为高效热泵的普及和制冷需求的增加,尤其是随着全球气温上升。如果不加以监管,制冷剂使用的这种扩张将导致制冷剂在温室气体排放总量中所占比例更大。
为了简化这种复杂的情况,所有温室气体的数据被转化为一个可比的单位,二氧化碳等效性或CO 2 E,通常以千克或吨为单位。因此,1吨Co 2 E具有1吨CO 2的全球变暖影响,但可以是7种京都气体中的任何一种。一吨Ch 4由25 TCO 2 E表示,因为CH 4具有CO 2的全球变暖潜力的25倍。N 2 O的全球变暖潜力(GWP)是CO 2的298倍。重要的是要意识到这些GWP索引值不是静态的。随着更好的科学信息,这些值可以随着时间的流逝而进行完善。为了与英国政府报告指导和因素一致,本指南中CO 2 E计算中使用的GWP是基于气候变化的政府间小组(IPCC)第四评估报告(AR4)GWPS代表100年的GWP。
在以下框架条件下要考虑的值:(1)全球变暖电位(GWP)既表示摇篮到门(A1-A3),又表示摇篮到坟墓(A-B-C)的影响(A-B-C)在NF EN 15804+A2:2018中所定义的影响; (2)基于生产活动期间收集的数据,我们当前的EPD和可再生能源的验证数据,在生命周期评估模型中计算出的验证数据,基于使用数据收集的数据建模的影响,低碳planibel clearlite的GWP值是自定义的值; (3)低碳层,层表板,IPLUS,能量,停止范围的GWP值是根据低碳平底层透明质晶体基质(S)GWP计算出的自宣布的值,以及对气候变化的估计转化影响,对气候变化的影响,用AGC生产站点(以及我们当前的Epdect and Extival and Evility fivital of Evility and Evility core nive and Evility reNE rene ren ren ren ren ren n of AGC生产站点都建立了对气候变化的影响; (4)IgU范围的估计GWP值是从AGC低碳玻璃估计的平均值,仅使用温暖的垫片和可再生电力(风)用于IgU生产,而IgU产量转化为75%至85%。根据标准NF EN 15804+A2:2018和法国国家补充NF EN15804/CN:2022 已验证并根据标准验证和生产的第三方,并将发行当前的2023年。已验证并根据标准验证和生产的第三方,并将发行当前的2023年。
自2016年LNG出口禁令自2016年解除以来,美国的抽象液化天然气(LNG)出口急剧上升,而美国现在是世界上最大的出口商。此LNG主要由页岩气产生。生产页岩气以及使油轮运输的液化天然气和液化天然气运输的液化是能源密集型的,这对LNG温室气体足迹产生了重大贡献。页岩气的生产和运输也发出了大量甲烷,液化天然气的液化和油轮运输可以进一步增加甲烷排放。因此,液化天然气的最终用途燃烧中的二氧化碳(CO 2)仅占LNG Greenhouse气体足迹的34%,当时在排放后20年中比较了CO 2和甲烷(GWP 20)(GWP 20)。上游和中游甲烷排放是LNG足迹的最大贡献者(基于GWP 20的总LNG排放量的38%)。添加用于生产LNG的能量的CO 2排放,上游和中游排放量平均占LNG总温室气体足迹的47%。其他重要的排放是液化过程(平均使用GWP 20的总计8.8%)和油轮运输(使用GWP 20平均占总数的5.5%)。油轮的排放量从3.9%到8.1%,具体取决于油轮类型。令人惊讶的是,尽管甲烷在排气口中的甲烷滑倒,但最现代的油轮与蒸汽动力油轮相比,由2冲程和4冲程发动机推动的总温室气体排放量高于蒸汽动力的油轮。总体而言,使用GWP 20分析(160 g CO 2 -eqivArt/mj vs 120 g CO 2 -eqivalent/mj),液化天然气作为燃料源的温室气体足迹比煤炭大33%。甚至在排放后的100年(GWP 100)的时间范围内考虑,这严重低估了甲烷的气候损害,LNG足迹等于或超过煤炭。
(GWP)绿色最低GWP较低GWP,并考虑设备一致性参考:1。Wilkinson Ajk,Braggins R,Steinbach I等。改用低全球变暖潜在吸入器的成本。英国NHS处方数据的经济和碳足迹分析。BMJ Open 2019; 9:E028763。doi:10.1136/bmjopen-2018-028763 2。https://www.medicines.org.uk/emc 3。Keeley D,Partridge MR。 哮喘和COPD的紧急MDI和垫片包装。 Lancet Respir Med 2019; 7:380–2 4。 mims碳足迹吸入餐表11月22日5. https://www.nice.org.uk/guidance/ng80/resources/inhalers/inhalers-for-asthma-for-asthma-patient-decision-decision-decision-aid-pdf-6727144573 6727144573Keeley D,Partridge MR。哮喘和COPD的紧急MDI和垫片包装。Lancet Respir Med 2019; 7:380–2 4。mims碳足迹吸入餐表11月22日5. https://www.nice.org.uk/guidance/ng80/resources/inhalers/inhalers-for-asthma-for-asthma-patient-decision-decision-decision-aid-pdf-6727144573
多年来,在水泥行业多年来,“净” GWP术语已被用来指出不包括生物排放的总排放量(GWP总数)减去由用作燃料的非生物量废物引起的排放。(与“总体”相反,这是不包括生物排放(GWP总数)的总排放)。如上所述,在EPD标准ISO 21930:2017和EN 15804中,EPD GWP值应基于“净”排放,只要共同处理就是浪费。EPD的验证者有责任检查用作燃料的非生物质量废物的废物状态。为例,德国是第一个采用IEA数值定义接近零和低碳水泥的国家(图3),使用EN 15804会计规则和水泥EPD中的相应GWP值进行比较。如果在某个国家/地区的EPD报告中既有的实践都不是上述“净”方法,例如在德国使用(即不用避免从废物中避免的CO 2排放(“毛”(“毛”)来归功于水泥,或者另一方面将避免的甲烷归功于水泥),然后可以使用第7节中描述的归一化过程来修改国家乐队的数值,以反映国家实践。应注意,根据CO 2 Energy and Co 2协议9的水泥行业对范围1排放的工业或生产报告包括“总报告”报告以及“净”报告。