本研究通过 TCAD 研究了重离子撞击对具有偏置场环的 beta-Ga 2 O 3 肖特基二极管的响应以及由此产生的单事件烧毁。使用实验电流-电压 (IV) 曲线验证了用于模拟高反向偏置下器件的模型。器件的场环配置表明,在模拟重离子撞击后,电荷去除效果有所改善。如果电荷去除的时间尺度比单事件烧毁更快,则这可能是一种有效的减少单离子撞击影响的机制。本研究探讨了终端结构的各种配置,并展示了不同设计参数对离子撞击后瞬态响应的影响。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,只要对原始作品进行适当的引用。[DOI:10.1149/2162-8777/acbcf1]
可以预测,将在未来二十年内构建足够强大的量子计算机。使用Shor和Grover等算法,量子计算机将能够打破许多现代加密方法,从而对全球数据安全构成重大威胁。尽管二十年似乎很长时间,但使用未来的量子技术可以对当今方法进行加密的敏感信息。因此,如果将来数据保持敏感,则应将其存储在量子安全方法中。密码学专家正在积极设计量子安全的加密技术。国家标准技术研究所(NIST)是美国商务部的机构。nist是密码学中事实上的权威,其建议在全球范围内广泛遵循。诺基亚致力于最先进的加密方法,紧随其后的是NIST的安全性发展。nist关注量子计算机的投掷物,最近启动了量子安全的加密标准,其中之一是基于模块的键盘封装机制(ML-KEM)标准。该研讨会将介绍ML-KEM及其工作原则。我们将探索哪些键合封码方法及其应用。另外,我们将讨论模块晶格和与之相关的特定问题:具有错误问题的模块学习。此问题构成了ML-KEM工作原理的基础。最后,我将提出自己的论文主题。关键字:量词后加密,晶格密码学,KEM,NIST
[2] M. Narayanan等。,“通过钒掺杂:生长,光学和terahertz表征的半绝缘β-GA2O3单晶”,J。Cryst。增长,第1卷。637–638,p。 127719,7月2024。
摘要:制备了NiO/β-Ga2O3异质结栅场效应晶体管(HJ-FET),并通过实验研究了在不同栅极应力电压(VG,s)和应力时间(ts)下器件的不稳定性机制。发现了器件在负偏压应力(NBS)下的两种不同退化机制。在较低的VG,s和较短的ts下,NiO体陷阱捕获/脱捕获电子分别导致漏电流的减少/恢复。在较高的VG,s或较长的ts下,器件的传输特性曲线和阈值电压(VTH)几乎永久地负移。这是因为界面偶极子几乎永久地电离并中和了异质结界面上的空间电荷区(SCR)中的电离电荷,导致SCR变窄。这为研究NiO/β-Ga2O3异质结器件在电力电子应用中的可靠性提供了重要的理论指导。
碳化硅和类似材料的晶体生长和综合表征方面最近取得的进展为功能应用开发提供了巨大的可能性。这期材料特刊题为“碳化硅材料:晶体生长、器件加工和功能应用”,专门讨论与碳化硅和相关材料的晶体生长、材料特性、器件制造和应用有关的所有方面,主要目的是广泛概述该领域的现状和未来前景。欢迎在该领域工作的研究人员参与讨论。潜在的兴趣主题包括但不限于以下内容: - 晶体生长; - 宽带隙半导体; - 材料特性; - 器件制造; - SiC、GaN、Ga2O3、金刚石。
6. Matthias Wurdack*、Tinghe Yun、Eliezer Estrecho、Nitu Syed、Semonti Bhattacharyya、Maciej Pieczarka、Ali Zavabeti、Shao-Yu Chen、Benedict Haas、Johannes Mueller、Qiaoliang Bao、Christian Schneider、Yuerui Lu、Michael S Fuhrer、Andrew G Truscott、Torben Daeneke*、Elena A. Ostrovskaya * 超薄 Ga2O3 玻璃:单层 WS2 的大规模钝化和保护材料。先进材料2021,33,
美国第7届氧化甲壳虫研讨会(GOX 2024)将于2024年8月5日至7日在俄亥俄州哥伦布的俄亥俄州立大学校园举行。在这个快速前进的领域中,该研讨会为报告材料,设备和电路开发的最新进展提供了一个首要平台,并确定了主要的科学差距。目的是在政府,行业和学术界建立可行的协调,以实现该领域的快速过渡技术。将没有书面程序来促进一个友好而刺激的环境,以在国内和国际GA2O3研究小组的参与者之间进行科学讨论。与会者可以期望主题,包括但不限于:批量和外延生长,理论/建模/仿真,设备和电路的进步,材料表征和新颖性能,热管理,电热管理,电热共同设计和异质结构。
宽带隙 (WBG) 半导体材料,例如碳化硅 (SiC)、氮化镓 (GaN) 或氧化镓 (Ga2O3),使电力电子元件比硅基 (Si) 元件更小、更快、更可靠、更高效。目前,全球约有一半的总能源消耗是电力,预计到 2030 年,80% 的电力将通过电力电子设备流动。然而,基础科学和材料科学还有很大的发展空间;宽带隙材料确实无处不在;几乎整个地壳都是由宽带隙氧化物形成的,还有许多硫族化合物、卤化物、有机和生物材料也是宽带隙材料,还有许多其他可能性。本期特刊是一系列文章的集合,报告了最近获得的结果的简要评论以及在这一广泛研究领域产生的新发现。
自从 1981 年 Mimura 博士展示出第一个高电子迁移率晶体管 (HEMT) 以来,HEMT 得到了迅速发展,并在不同的材料系统中商业化,用于各种应用。在早期开发阶段,基于 AlGaAs/GaAs、GaAs/InGaAs 和 InP 的 HEMT 被广泛应用于高速电子通信应用中,具有出色的噪声和功率性能。GaN HEMT 的发展为更多应用打开了大门,例如电力电子、毫米波频率系统、生物传感和抗辐射电子。最近,基于 AlGaN 和 Ga2O3 的超宽带隙材料 HEMT 已被引入并显示出令人鼓舞的结果。本期特刊将介绍创新的 HEMT 设备、基于 HEMT 技术的应用、HEMT 相关材料研究,包括外延生长、材料特性和制造技术以及 HEMT 模拟。
我研究了半导体中分离的氢,除了开发新的实验技术以做到这一点。活动/项目包括:“ Beo中的Muonium State的微波研究”,“ GAAS负电荷的Muonium上的光电子化光谱”; “通过光激发哑光自旋光谱探测的ZnSE中的受体氢状态”; “中性和磁磁性muonium作为β-GA2O3中分离氢的类似物”; “研究金红石,解剖酶和布鲁克特二氧化钛的MU/H样状态”; “探测磁性,金属到半导体过渡的金属以及H中H中H的性质”; “研究透明导电氧化物中的氢动力学和稳定性”; “氢杂质在CIGS和CZTS化合物中的作用和行为(下一代太阳能电池材料)”; “描述锡氏合金中H杂质的早期历史”; “开发激发态(MUSES)技术用于半导体的MUON光谱”; “研究MU(类似于H的)国家,包括停止位点,动力学以及碳化硅中的供体和受体水平”;“ GE中的Muonium-Photocarrier相互作用”; GAAS中的“ Muonium-photoionization和Muonium-Photocarrier相互作用”; “旋转北极星候选材料的调查”
