摘要 带隙工程是开发光电器件的关键方法,特别是对于近红外 (NIR) 应用,其中精确控制材料的电子和光学特性至关重要。本研究探讨了三种 III-V 半导体合金——砷化镓锑 (GaAsSb)、砷化镓锑氮化物 (GaAsSbN) 和砷化镓铝 (GaAlAs)——在定制带隙以满足 NIR 器件特定需求方面的潜力。GaAsSb 通过调整锑含量提供可调带隙,使其成为 NIR 光电探测器和激光二极管的多功能材料。GaAsSbN 中的氮进一步降低了带隙,增强了其对长波长应用的适用性,并提供与 GaAs 基板更好的晶格匹配。GaAlAs 以其稳定性和与 GaAs 的兼容性而闻名,可用于形成异质结和量子阱,从而实现高效的载流子限制和发射控制。通过改变这些合金的成分,工程师可以实现精确的带隙调节,从而优化一系列 NIR 波长范围内的器件性能。本摘要强调了成分变化、应变工程和量子阱设计在开发先进 NIR 光电器件中的重要性。尽管存在材料质量和热管理等挑战,但这些材料的持续改进对电信、医学成像和传感技术中的下一代 NIR 应用具有重要意义。简介 带隙工程是半导体技术中的一项基本技术,可以精确操纵材料的电子和光学
使用X射线衍射(XRD)方法对纳米结构进行表征提供了有关结构的组成,晶格应变和异次层状层的信息。这些信息对于光电设备的制造过程很有用。在本文中,我们对常用材料Gaalas提供了基本描述。此外,X射线衍射方法对材料表征的重要性为材料的生长和开发过程提供了至关重要的信息。使用X射线衍射(XRD)方法分析外延生长GAAS/GAALA异质结构的结构表征。rigaku全球拟合模拟程序进行比较,以比较实验结果,模拟和实验结果彼此一致。
说明VOM452和VOM453,高速光电耦合器,每个由Gaalas红外发射二极管组成,光学地与集成的光子探测器和高速晶体管组成。光检测器是从晶体管中分离出来的,以减少米勒电容效应。开放的收集器输出功能允许电路设计人员与不同逻辑系统(例如TTL,CMOS等)接口时调整负载条件。由于VOM452和VOM453在检测器芯片上具有法拉第盾,因此它也可以拒绝并最大程度地减少输入通用模式瞬态电压。没有基本连接,进一步降低了进入包装的潜在电噪声。VOM452和VOM453包装在行业标准SOP-5软件包中,适用于表面安装。这是工业通信总线隔离的理想解决方案,以及隔离的驱动电路应用,例如IPM(智能电源模块)驱动程序。
说明VOM452和VOM453,高速光电耦合器,每个由Gaalas红外发射二极管组成,光学地与集成的光子探测器和高速晶体管组成。光检测器是从晶体管中分离出来的,以减少米勒电容效应。开放的收集器输出功能允许电路设计人员与不同逻辑系统(例如TTL,CMOS等)接口时调整负载条件。由于VOM452和VOM453在检测器芯片上具有法拉第盾,因此它也可以拒绝并最大程度地减少输入通用模式瞬态电压。没有基本连接,进一步降低了进入包装的潜在电噪声。VOM452和VOM453包装在行业标准SOP-5软件包中,适用于表面安装。这是工业通信总线隔离的理想解决方案,以及隔离的驱动电路应用,例如IPM(智能电源模块)驱动程序。